--- license: mit datasets: - liumindmind/NekoQA-10K language: - zh base_model: - hhzm/qwen3-14b-meow pipeline_tag: text-generation --- # **DISCLAIMER: This model is an experimental project by a beginner in fine-tuning. Output quality is not guaranteed, so please do not use it for production or professional work.** ```sh pip install "vllm>=0.8.5" ``` Use `--enable-auto-tool-choice --tool-call-parser hermes` to enable tool calling. ``` # enable reasoning VLLM_ALLOW_LONG_MAX_MODEL_LEN=1 vllm serve hhzm/qwen3-14b-meow-gptq-w8a8 --reasoning-parser qwen3 --enable-auto-tool-choice --tool-call-parser hermes # disable reasoning VLLM_ALLOW_LONG_MAX_MODEL_LEN=1 vllm serve hhzm/qwen3-14b-meow-gptq-w8a8 --chat-template qwen3-14b-meow-gptq-w8a8/qwen3_nonthinking.jinja --enable-auto-tool-choice --tool-call-parser hermes ``` For longer context window (>40960), use YaRN, factor is adjustable. The environment variable VLLM_ALLOW_LONG_MAX_MODEL_LEN=1 is required to enable context lengths greater than 40960. ```sh # enable YaRN rope scaling --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max_model_len 131072 ``` Expected to be compatible with older Volta and Turing generation GPUs, as it was trained with FlashAttention-2 disabled, and using FP16.