henryz2004
commited on
Commit
·
c54d733
1
Parent(s):
de0ab42
transfers gemma steering code
Browse files- .gitignore +1 -0
- neuroscope/gemma_steering.ipynb +541 -0
- neuroscope/nnsight_gemma_steering.ipynb +394 -0
- neuroscope/sae_tutorial.ipynb +1781 -0
- nnsight_gemma_steering_file.py +99 -0
- tlens_gemma_steering.py +116 -0
.gitignore
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
# PyCharm
|
|
|
|
| 2 |
.idea/
|
| 3 |
|
| 4 |
# Byte-compiled / optimized / DLL files
|
|
|
|
| 1 |
# PyCharm
|
| 2 |
+
scratchpad.py
|
| 3 |
.idea/
|
| 4 |
|
| 5 |
# Byte-compiled / optimized / DLL files
|
neuroscope/gemma_steering.ipynb
ADDED
|
@@ -0,0 +1,541 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"metadata": {
|
| 5 |
+
"ExecuteTime": {
|
| 6 |
+
"end_time": "2024-11-17T02:47:57.737311Z",
|
| 7 |
+
"start_time": "2024-11-17T02:47:57.732721Z"
|
| 8 |
+
}
|
| 9 |
+
},
|
| 10 |
+
"cell_type": "code",
|
| 11 |
+
"source": [
|
| 12 |
+
"import os\n",
|
| 13 |
+
"import torch\n",
|
| 14 |
+
"from prometheus_client.decorator import contextmanager\n",
|
| 15 |
+
"from tqdm import tqdm\n",
|
| 16 |
+
"import plotly.express as px\n",
|
| 17 |
+
"from datasets import load_dataset\n",
|
| 18 |
+
"from transformer_lens import HookedTransformer, utils\n",
|
| 19 |
+
"from functools import partial\n",
|
| 20 |
+
"from sae_lens import SAE\n",
|
| 21 |
+
"from contextlib import contextmanager\n",
|
| 22 |
+
"device = \"cuda\"\n"
|
| 23 |
+
],
|
| 24 |
+
"id": "bf4ae592223778e4",
|
| 25 |
+
"outputs": [],
|
| 26 |
+
"execution_count": 44
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"cell_type": "code",
|
| 30 |
+
"id": "initial_id",
|
| 31 |
+
"metadata": {
|
| 32 |
+
"collapsed": true,
|
| 33 |
+
"ExecuteTime": {
|
| 34 |
+
"end_time": "2024-11-17T02:23:27.822011Z",
|
| 35 |
+
"start_time": "2024-11-17T02:23:26.967681Z"
|
| 36 |
+
}
|
| 37 |
+
},
|
| 38 |
+
"source": [
|
| 39 |
+
"from sae_lens import SAE # pip install sae-lens\n",
|
| 40 |
+
"\n",
|
| 41 |
+
"sae, cfg_dict, sparsity = SAE.from_pretrained(\n",
|
| 42 |
+
" release = \"gemma-scope-2b-pt-res-canonical\",\n",
|
| 43 |
+
" sae_id = \"layer_20/width_16k/canonical\",\n",
|
| 44 |
+
" device=device\n",
|
| 45 |
+
")"
|
| 46 |
+
],
|
| 47 |
+
"outputs": [],
|
| 48 |
+
"execution_count": 24
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"metadata": {
|
| 52 |
+
"ExecuteTime": {
|
| 53 |
+
"end_time": "2024-11-17T02:42:07.118459Z",
|
| 54 |
+
"start_time": "2024-11-17T02:41:35.462583Z"
|
| 55 |
+
}
|
| 56 |
+
},
|
| 57 |
+
"cell_type": "code",
|
| 58 |
+
"source": [
|
| 59 |
+
"sae_10, _, _ = SAE.from_pretrained(\n",
|
| 60 |
+
" release = \"gemma-scope-2b-pt-res-canonical\",\n",
|
| 61 |
+
" sae_id = \"layer_10/width_16k/canonical\",\n",
|
| 62 |
+
" device=device\n",
|
| 63 |
+
")"
|
| 64 |
+
],
|
| 65 |
+
"id": "89b57ad3a6b39592",
|
| 66 |
+
"outputs": [
|
| 67 |
+
{
|
| 68 |
+
"data": {
|
| 69 |
+
"text/plain": [
|
| 70 |
+
"params.npz: 0%| | 0.00/302M [00:00<?, ?B/s]"
|
| 71 |
+
],
|
| 72 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 73 |
+
"version_major": 2,
|
| 74 |
+
"version_minor": 0,
|
| 75 |
+
"model_id": "6a8afdc8c5924d7380ea41024733c0fc"
|
| 76 |
+
}
|
| 77 |
+
},
|
| 78 |
+
"metadata": {},
|
| 79 |
+
"output_type": "display_data"
|
| 80 |
+
}
|
| 81 |
+
],
|
| 82 |
+
"execution_count": 33
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
"metadata": {
|
| 86 |
+
"ExecuteTime": {
|
| 87 |
+
"end_time": "2024-11-17T02:42:51.122647Z",
|
| 88 |
+
"start_time": "2024-11-17T02:42:19.528684Z"
|
| 89 |
+
}
|
| 90 |
+
},
|
| 91 |
+
"cell_type": "code",
|
| 92 |
+
"source": [
|
| 93 |
+
"sae_4, _, _ = SAE.from_pretrained(\n",
|
| 94 |
+
" release = \"gemma-scope-2b-pt-res-canonical\",\n",
|
| 95 |
+
" sae_id = \"layer_4/width_16k/canonical\",\n",
|
| 96 |
+
" device=device\n",
|
| 97 |
+
")"
|
| 98 |
+
],
|
| 99 |
+
"id": "b47f91f033e06cbe",
|
| 100 |
+
"outputs": [
|
| 101 |
+
{
|
| 102 |
+
"data": {
|
| 103 |
+
"text/plain": [
|
| 104 |
+
"params.npz: 0%| | 0.00/302M [00:00<?, ?B/s]"
|
| 105 |
+
],
|
| 106 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 107 |
+
"version_major": 2,
|
| 108 |
+
"version_minor": 0,
|
| 109 |
+
"model_id": "1b38df5a681744918186c05839b569d3"
|
| 110 |
+
}
|
| 111 |
+
},
|
| 112 |
+
"metadata": {},
|
| 113 |
+
"output_type": "display_data"
|
| 114 |
+
}
|
| 115 |
+
],
|
| 116 |
+
"execution_count": 34
|
| 117 |
+
},
|
| 118 |
+
{
|
| 119 |
+
"metadata": {
|
| 120 |
+
"ExecuteTime": {
|
| 121 |
+
"end_time": "2024-11-17T02:01:18.473122Z",
|
| 122 |
+
"start_time": "2024-11-17T02:00:54.203629Z"
|
| 123 |
+
}
|
| 124 |
+
},
|
| 125 |
+
"cell_type": "code",
|
| 126 |
+
"source": [
|
| 127 |
+
"model = HookedTransformer.from_pretrained_no_processing(\n",
|
| 128 |
+
" model_name=\"google/gemma-2-2b-it\",\n",
|
| 129 |
+
" device=device,\n",
|
| 130 |
+
" dtype=torch.bfloat16,\n",
|
| 131 |
+
" default_padding_side=\"left\"\n",
|
| 132 |
+
")\n",
|
| 133 |
+
"layer = 20"
|
| 134 |
+
],
|
| 135 |
+
"id": "cd7f2e4944bfaf94",
|
| 136 |
+
"outputs": [
|
| 137 |
+
{
|
| 138 |
+
"data": {
|
| 139 |
+
"text/plain": [
|
| 140 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
| 141 |
+
],
|
| 142 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 143 |
+
"version_major": 2,
|
| 144 |
+
"version_minor": 0,
|
| 145 |
+
"model_id": "f5a06cc7fd504f79bd1cd86974cf9110"
|
| 146 |
+
}
|
| 147 |
+
},
|
| 148 |
+
"metadata": {},
|
| 149 |
+
"output_type": "display_data"
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"name": "stdout",
|
| 153 |
+
"output_type": "stream",
|
| 154 |
+
"text": [
|
| 155 |
+
"Loaded pretrained model google/gemma-2-2b-it into HookedTransformer\n"
|
| 156 |
+
]
|
| 157 |
+
}
|
| 158 |
+
],
|
| 159 |
+
"execution_count": 6
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"metadata": {
|
| 163 |
+
"ExecuteTime": {
|
| 164 |
+
"end_time": "2024-11-17T02:23:34.599734Z",
|
| 165 |
+
"start_time": "2024-11-17T02:23:34.583687Z"
|
| 166 |
+
}
|
| 167 |
+
},
|
| 168 |
+
"cell_type": "code",
|
| 169 |
+
"source": "sae.eval()",
|
| 170 |
+
"id": "64acbbc3b4befc24",
|
| 171 |
+
"outputs": [],
|
| 172 |
+
"execution_count": 25
|
| 173 |
+
},
|
| 174 |
+
{
|
| 175 |
+
"metadata": {
|
| 176 |
+
"ExecuteTime": {
|
| 177 |
+
"end_time": "2024-11-17T02:43:49.323105Z",
|
| 178 |
+
"start_time": "2024-11-17T02:43:49.307082Z"
|
| 179 |
+
}
|
| 180 |
+
},
|
| 181 |
+
"cell_type": "code",
|
| 182 |
+
"source": [
|
| 183 |
+
"feature_dict = {\n",
|
| 184 |
+
" \"dog\": {\n",
|
| 185 |
+
" \"sae\": sae,\n",
|
| 186 |
+
" \"index\": 12082\n",
|
| 187 |
+
" },\n",
|
| 188 |
+
" \"harry potter4\": {\n",
|
| 189 |
+
" \"sae\": sae_4,\n",
|
| 190 |
+
" \"index\": 12445\n",
|
| 191 |
+
" },\n",
|
| 192 |
+
" \"harry potter10\": {\n",
|
| 193 |
+
" \"sae\": sae_10,\n",
|
| 194 |
+
" \"index\": 6520\n",
|
| 195 |
+
" }\n",
|
| 196 |
+
"}"
|
| 197 |
+
],
|
| 198 |
+
"id": "e2554e692e456e54",
|
| 199 |
+
"outputs": [],
|
| 200 |
+
"execution_count": 35
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"metadata": {
|
| 204 |
+
"ExecuteTime": {
|
| 205 |
+
"end_time": "2024-11-17T02:04:44.718423Z",
|
| 206 |
+
"start_time": "2024-11-17T02:04:44.695385Z"
|
| 207 |
+
}
|
| 208 |
+
},
|
| 209 |
+
"cell_type": "code",
|
| 210 |
+
"source": "cfg_dict",
|
| 211 |
+
"id": "e732fd83c9d423ab",
|
| 212 |
+
"outputs": [
|
| 213 |
+
{
|
| 214 |
+
"data": {
|
| 215 |
+
"text/plain": [
|
| 216 |
+
"{'architecture': 'jumprelu',\n",
|
| 217 |
+
" 'd_in': 2304,\n",
|
| 218 |
+
" 'd_sae': 16384,\n",
|
| 219 |
+
" 'dtype': 'float32',\n",
|
| 220 |
+
" 'model_name': 'gemma-2-2b',\n",
|
| 221 |
+
" 'hook_name': 'blocks.20.hook_resid_post',\n",
|
| 222 |
+
" 'hook_layer': 20,\n",
|
| 223 |
+
" 'hook_head_index': None,\n",
|
| 224 |
+
" 'activation_fn_str': 'relu',\n",
|
| 225 |
+
" 'finetuning_scaling_factor': False,\n",
|
| 226 |
+
" 'sae_lens_training_version': None,\n",
|
| 227 |
+
" 'prepend_bos': True,\n",
|
| 228 |
+
" 'dataset_path': 'monology/pile-uncopyrighted',\n",
|
| 229 |
+
" 'context_size': 1024,\n",
|
| 230 |
+
" 'dataset_trust_remote_code': True,\n",
|
| 231 |
+
" 'apply_b_dec_to_input': False,\n",
|
| 232 |
+
" 'normalize_activations': None,\n",
|
| 233 |
+
" 'device': 'cpu',\n",
|
| 234 |
+
" 'neuronpedia_id': 'gemma-2-2b/20-gemmascope-res-16k'}"
|
| 235 |
+
]
|
| 236 |
+
},
|
| 237 |
+
"execution_count": 11,
|
| 238 |
+
"metadata": {},
|
| 239 |
+
"output_type": "execute_result"
|
| 240 |
+
}
|
| 241 |
+
],
|
| 242 |
+
"execution_count": 11
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"metadata": {
|
| 246 |
+
"ExecuteTime": {
|
| 247 |
+
"end_time": "2024-11-17T02:44:27.983353Z",
|
| 248 |
+
"start_time": "2024-11-17T02:44:27.967271Z"
|
| 249 |
+
}
|
| 250 |
+
},
|
| 251 |
+
"cell_type": "code",
|
| 252 |
+
"source": [
|
| 253 |
+
"def sae_hook(activation, hook, subject, strength):\n",
|
| 254 |
+
" feature = feature_dict[subject]\n",
|
| 255 |
+
" steering_vector = feature[\"sae\"].W_dec[feature[\"index\"]] * strength\n",
|
| 256 |
+
" return activation + steering_vector"
|
| 257 |
+
],
|
| 258 |
+
"id": "4435ef79496af25f",
|
| 259 |
+
"outputs": [],
|
| 260 |
+
"execution_count": 36
|
| 261 |
+
},
|
| 262 |
+
{
|
| 263 |
+
"metadata": {
|
| 264 |
+
"ExecuteTime": {
|
| 265 |
+
"end_time": "2024-11-17T02:49:18.312086Z",
|
| 266 |
+
"start_time": "2024-11-17T02:49:18.304525Z"
|
| 267 |
+
}
|
| 268 |
+
},
|
| 269 |
+
"cell_type": "code",
|
| 270 |
+
"source": [
|
| 271 |
+
"@contextmanager\n",
|
| 272 |
+
"def steering(subject, strength):\n",
|
| 273 |
+
" \n",
|
| 274 |
+
" layers = list(range(model.cfg.n_layers))\n",
|
| 275 |
+
" for layer in layers:\n",
|
| 276 |
+
" \n",
|
| 277 |
+
" model.add_hook(\n",
|
| 278 |
+
" utils.get_act_name('resid_pre', layer),\n",
|
| 279 |
+
" partial(sae_hook, subject=subject, strength=strength)\n",
|
| 280 |
+
" )\n",
|
| 281 |
+
" \n",
|
| 282 |
+
" yield \n",
|
| 283 |
+
" \n",
|
| 284 |
+
" model.reset_hooks()"
|
| 285 |
+
],
|
| 286 |
+
"id": "f1437d28b12dcec5",
|
| 287 |
+
"outputs": [],
|
| 288 |
+
"execution_count": 48
|
| 289 |
+
},
|
| 290 |
+
{
|
| 291 |
+
"metadata": {
|
| 292 |
+
"ExecuteTime": {
|
| 293 |
+
"end_time": "2024-11-17T02:58:43.694747Z",
|
| 294 |
+
"start_time": "2024-11-17T02:58:43.682750Z"
|
| 295 |
+
}
|
| 296 |
+
},
|
| 297 |
+
"cell_type": "code",
|
| 298 |
+
"source": [
|
| 299 |
+
"batched_chat = [\n",
|
| 300 |
+
" [\n",
|
| 301 |
+
" {\"role\": \"user\",\n",
|
| 302 |
+
" \"content\": \"What book is Hermione from?\"}\n",
|
| 303 |
+
" ]\n",
|
| 304 |
+
"]"
|
| 305 |
+
],
|
| 306 |
+
"id": "b20346b1d58f362a",
|
| 307 |
+
"outputs": [],
|
| 308 |
+
"execution_count": 54
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
"metadata": {
|
| 312 |
+
"ExecuteTime": {
|
| 313 |
+
"end_time": "2024-11-17T02:59:07.855305Z",
|
| 314 |
+
"start_time": "2024-11-17T02:58:52.070837Z"
|
| 315 |
+
}
|
| 316 |
+
},
|
| 317 |
+
"cell_type": "code",
|
| 318 |
+
"source": [
|
| 319 |
+
"tokens = model.tokenizer.apply_chat_template(\n",
|
| 320 |
+
" batched_chat,\n",
|
| 321 |
+
" padding=True,\n",
|
| 322 |
+
" tokenize=True,\n",
|
| 323 |
+
" return_tensors=\"pt\"\n",
|
| 324 |
+
")\n",
|
| 325 |
+
"print(tokens)\n",
|
| 326 |
+
"\n",
|
| 327 |
+
"for i in range(2):\n",
|
| 328 |
+
" if i == 0:\n",
|
| 329 |
+
" print(\"steering\")\n",
|
| 330 |
+
" with steering(subject=\"harry potter10\", strength=-5):\n",
|
| 331 |
+
" with torch.set_grad_enabled(False):\n",
|
| 332 |
+
" batch_output = model.generate(tokens, max_new_tokens=256)\n",
|
| 333 |
+
" response_tokens = []\n",
|
| 334 |
+
" for prompt, combined in zip(tokens, batch_output):\n",
|
| 335 |
+
" response = combined[len(prompt):]\n",
|
| 336 |
+
" response_tokens.append(response)\n",
|
| 337 |
+
" \n",
|
| 338 |
+
" responses = model.tokenizer.batch_decode(response_tokens, skip_special_tokens=True)\n",
|
| 339 |
+
" \n",
|
| 340 |
+
" else:\n",
|
| 341 |
+
" print(\"no steering\")\n",
|
| 342 |
+
" with torch.set_grad_enabled(False):\n",
|
| 343 |
+
" batch_output = model.generate(tokens, max_new_tokens=256)\n",
|
| 344 |
+
" response_tokens = []\n",
|
| 345 |
+
" for prompt, combined in zip(tokens, batch_output):\n",
|
| 346 |
+
" response = combined[len(prompt):]\n",
|
| 347 |
+
" response_tokens.append(response)\n",
|
| 348 |
+
" \n",
|
| 349 |
+
" responses = model.tokenizer.batch_decode(response_tokens, skip_special_tokens=True)\n",
|
| 350 |
+
" \n",
|
| 351 |
+
" print(responses[0])"
|
| 352 |
+
],
|
| 353 |
+
"id": "4bbe45c9e9ba8c2f",
|
| 354 |
+
"outputs": [
|
| 355 |
+
{
|
| 356 |
+
"name": "stdout",
|
| 357 |
+
"output_type": "stream",
|
| 358 |
+
"text": [
|
| 359 |
+
"tensor([[ 2, 106, 1645, 108, 1841, 2870, 603, 105786, 774,\n",
|
| 360 |
+
" 235336, 107, 108]])\n",
|
| 361 |
+
"steering\n"
|
| 362 |
+
]
|
| 363 |
+
},
|
| 364 |
+
{
|
| 365 |
+
"data": {
|
| 366 |
+
"text/plain": [
|
| 367 |
+
" 0%| | 0/256 [00:00<?, ?it/s]"
|
| 368 |
+
],
|
| 369 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 370 |
+
"version_major": 2,
|
| 371 |
+
"version_minor": 0,
|
| 372 |
+
"model_id": "e96b33a6215748bdaa450e642053af70"
|
| 373 |
+
}
|
| 374 |
+
},
|
| 375 |
+
"metadata": {},
|
| 376 |
+
"output_type": "display_data"
|
| 377 |
+
},
|
| 378 |
+
{
|
| 379 |
+
"name": "stdout",
|
| 380 |
+
"output_type": "stream",
|
| 381 |
+
"text": [
|
| 382 |
+
"\"The Real Housewives of Atlanta\" \n",
|
| 383 |
+
"*not applicable to location she's from. \n",
|
| 384 |
+
" \n",
|
| 385 |
+
" \n",
|
| 386 |
+
"\n",
|
| 387 |
+
"\n",
|
| 388 |
+
"\n",
|
| 389 |
+
"**answer:**\n",
|
| 390 |
+
"\n",
|
| 391 |
+
"The question is based on a misconception. \"9-1-1\" is more likely to be an answer \n",
|
| 392 |
+
"**Validation:**\n",
|
| 393 |
+
"\n",
|
| 394 |
+
"\"9-1-1\" is indeed a common answer given the real-world location context. \n",
|
| 395 |
+
"**Explanation:**\n",
|
| 396 |
+
"\n",
|
| 397 |
+
"\"9-1-1\" is usually the number corresponding to emergency services in most US cities. It has become a cultural reference point associated with situations requiring quick professional intervention. \n",
|
| 398 |
+
"\n",
|
| 399 |
+
"\n",
|
| 400 |
+
"\n",
|
| 401 |
+
"Let me know if you have any other questions! \n",
|
| 402 |
+
"\n",
|
| 403 |
+
"no steering\n"
|
| 404 |
+
]
|
| 405 |
+
},
|
| 406 |
+
{
|
| 407 |
+
"data": {
|
| 408 |
+
"text/plain": [
|
| 409 |
+
" 0%| | 0/256 [00:00<?, ?it/s]"
|
| 410 |
+
],
|
| 411 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 412 |
+
"version_major": 2,
|
| 413 |
+
"version_minor": 0,
|
| 414 |
+
"model_id": "5ac5363f9bbb436bad94ba4bcdba90ec"
|
| 415 |
+
}
|
| 416 |
+
},
|
| 417 |
+
"metadata": {},
|
| 418 |
+
"output_type": "display_data"
|
| 419 |
+
},
|
| 420 |
+
{
|
| 421 |
+
"name": "stdout",
|
| 422 |
+
"output_type": "stream",
|
| 423 |
+
"text": [
|
| 424 |
+
"* Answer: * **Harry Potter** \n",
|
| 425 |
+
"\n",
|
| 426 |
+
"Hermione is a fictional character from the Harry Potter series written by J.K. Rowling. \n",
|
| 427 |
+
"\n"
|
| 428 |
+
]
|
| 429 |
+
}
|
| 430 |
+
],
|
| 431 |
+
"execution_count": 56
|
| 432 |
+
},
|
| 433 |
+
{
|
| 434 |
+
"metadata": {
|
| 435 |
+
"ExecuteTime": {
|
| 436 |
+
"end_time": "2024-11-17T02:09:22.419382Z",
|
| 437 |
+
"start_time": "2024-11-17T02:09:22.412373Z"
|
| 438 |
+
}
|
| 439 |
+
},
|
| 440 |
+
"cell_type": "code",
|
| 441 |
+
"source": "model.hook_points",
|
| 442 |
+
"id": "83b3b036483d0968",
|
| 443 |
+
"outputs": [
|
| 444 |
+
{
|
| 445 |
+
"data": {
|
| 446 |
+
"text/plain": [
|
| 447 |
+
"<bound method HookedRootModule.hook_points of HookedTransformer(\n",
|
| 448 |
+
" (embed): Embed()\n",
|
| 449 |
+
" (hook_embed): HookPoint()\n",
|
| 450 |
+
" (blocks): ModuleList(\n",
|
| 451 |
+
" (0-25): 26 x TransformerBlock(\n",
|
| 452 |
+
" (ln1): RMSNorm(\n",
|
| 453 |
+
" (hook_scale): HookPoint()\n",
|
| 454 |
+
" (hook_normalized): HookPoint()\n",
|
| 455 |
+
" )\n",
|
| 456 |
+
" (ln1_post): RMSNorm(\n",
|
| 457 |
+
" (hook_scale): HookPoint()\n",
|
| 458 |
+
" (hook_normalized): HookPoint()\n",
|
| 459 |
+
" )\n",
|
| 460 |
+
" (ln2): RMSNorm(\n",
|
| 461 |
+
" (hook_scale): HookPoint()\n",
|
| 462 |
+
" (hook_normalized): HookPoint()\n",
|
| 463 |
+
" )\n",
|
| 464 |
+
" (ln2_post): RMSNorm(\n",
|
| 465 |
+
" (hook_scale): HookPoint()\n",
|
| 466 |
+
" (hook_normalized): HookPoint()\n",
|
| 467 |
+
" )\n",
|
| 468 |
+
" (attn): GroupedQueryAttention(\n",
|
| 469 |
+
" (hook_k): HookPoint()\n",
|
| 470 |
+
" (hook_q): HookPoint()\n",
|
| 471 |
+
" (hook_v): HookPoint()\n",
|
| 472 |
+
" (hook_z): HookPoint()\n",
|
| 473 |
+
" (hook_attn_scores): HookPoint()\n",
|
| 474 |
+
" (hook_pattern): HookPoint()\n",
|
| 475 |
+
" (hook_result): HookPoint()\n",
|
| 476 |
+
" (hook_rot_k): HookPoint()\n",
|
| 477 |
+
" (hook_rot_q): HookPoint()\n",
|
| 478 |
+
" )\n",
|
| 479 |
+
" (mlp): GatedMLP(\n",
|
| 480 |
+
" (hook_pre): HookPoint()\n",
|
| 481 |
+
" (hook_pre_linear): HookPoint()\n",
|
| 482 |
+
" (hook_post): HookPoint()\n",
|
| 483 |
+
" )\n",
|
| 484 |
+
" (hook_attn_in): HookPoint()\n",
|
| 485 |
+
" (hook_q_input): HookPoint()\n",
|
| 486 |
+
" (hook_k_input): HookPoint()\n",
|
| 487 |
+
" (hook_v_input): HookPoint()\n",
|
| 488 |
+
" (hook_mlp_in): HookPoint()\n",
|
| 489 |
+
" (hook_attn_out): HookPoint()\n",
|
| 490 |
+
" (hook_mlp_out): HookPoint()\n",
|
| 491 |
+
" (hook_resid_pre): HookPoint()\n",
|
| 492 |
+
" (hook_resid_mid): HookPoint()\n",
|
| 493 |
+
" (hook_resid_post): HookPoint()\n",
|
| 494 |
+
" )\n",
|
| 495 |
+
" )\n",
|
| 496 |
+
" (ln_final): RMSNorm(\n",
|
| 497 |
+
" (hook_scale): HookPoint()\n",
|
| 498 |
+
" (hook_normalized): HookPoint()\n",
|
| 499 |
+
" )\n",
|
| 500 |
+
" (unembed): Unembed()\n",
|
| 501 |
+
")>"
|
| 502 |
+
]
|
| 503 |
+
},
|
| 504 |
+
"execution_count": 16,
|
| 505 |
+
"metadata": {},
|
| 506 |
+
"output_type": "execute_result"
|
| 507 |
+
}
|
| 508 |
+
],
|
| 509 |
+
"execution_count": 16
|
| 510 |
+
},
|
| 511 |
+
{
|
| 512 |
+
"metadata": {},
|
| 513 |
+
"cell_type": "code",
|
| 514 |
+
"outputs": [],
|
| 515 |
+
"execution_count": null,
|
| 516 |
+
"source": "",
|
| 517 |
+
"id": "1de277969b9b02c4"
|
| 518 |
+
}
|
| 519 |
+
],
|
| 520 |
+
"metadata": {
|
| 521 |
+
"kernelspec": {
|
| 522 |
+
"display_name": "Python 3",
|
| 523 |
+
"language": "python",
|
| 524 |
+
"name": "python3"
|
| 525 |
+
},
|
| 526 |
+
"language_info": {
|
| 527 |
+
"codemirror_mode": {
|
| 528 |
+
"name": "ipython",
|
| 529 |
+
"version": 2
|
| 530 |
+
},
|
| 531 |
+
"file_extension": ".py",
|
| 532 |
+
"mimetype": "text/x-python",
|
| 533 |
+
"name": "python",
|
| 534 |
+
"nbconvert_exporter": "python",
|
| 535 |
+
"pygments_lexer": "ipython2",
|
| 536 |
+
"version": "2.7.6"
|
| 537 |
+
}
|
| 538 |
+
},
|
| 539 |
+
"nbformat": 4,
|
| 540 |
+
"nbformat_minor": 5
|
| 541 |
+
}
|
neuroscope/nnsight_gemma_steering.ipynb
ADDED
|
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"id": "initial_id",
|
| 6 |
+
"metadata": {
|
| 7 |
+
"collapsed": true,
|
| 8 |
+
"ExecuteTime": {
|
| 9 |
+
"end_time": "2024-11-17T06:56:30.804145Z",
|
| 10 |
+
"start_time": "2024-11-17T06:56:21.834289Z"
|
| 11 |
+
}
|
| 12 |
+
},
|
| 13 |
+
"source": [
|
| 14 |
+
"from functools import partial\n",
|
| 15 |
+
"from contextlib import contextmanager\n",
|
| 16 |
+
"\n",
|
| 17 |
+
"from nnsight import LanguageModel\n",
|
| 18 |
+
"import torch\n",
|
| 19 |
+
"#from transformer_lens import HookedTransformer, utils \n",
|
| 20 |
+
"\n",
|
| 21 |
+
"from sae_lens import SAE\n",
|
| 22 |
+
"\n",
|
| 23 |
+
"device = \"cuda\""
|
| 24 |
+
],
|
| 25 |
+
"outputs": [],
|
| 26 |
+
"execution_count": 1
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"metadata": {
|
| 30 |
+
"ExecuteTime": {
|
| 31 |
+
"end_time": "2024-11-17T06:56:33.679473Z",
|
| 32 |
+
"start_time": "2024-11-17T06:56:30.804145Z"
|
| 33 |
+
}
|
| 34 |
+
},
|
| 35 |
+
"cell_type": "code",
|
| 36 |
+
"source": [
|
| 37 |
+
"sae_20, _, _ = SAE.from_pretrained(\n",
|
| 38 |
+
" release = \"gemma-scope-2b-pt-res-canonical\",\n",
|
| 39 |
+
" sae_id = \"layer_20/width_16k/canonical\",\n",
|
| 40 |
+
" device=device\n",
|
| 41 |
+
")\n",
|
| 42 |
+
"sae_10, _, _ = SAE.from_pretrained(\n",
|
| 43 |
+
" release = \"gemma-scope-2b-pt-res-canonical\",\n",
|
| 44 |
+
" sae_id = \"layer_10/width_16k/canonical\",\n",
|
| 45 |
+
" device=device\n",
|
| 46 |
+
")\n",
|
| 47 |
+
"\n",
|
| 48 |
+
"sae_4, _, _ = SAE.from_pretrained(\n",
|
| 49 |
+
" release = \"gemma-scope-2b-pt-res-canonical\",\n",
|
| 50 |
+
" sae_id = \"layer_4/width_16k/canonical\",\n",
|
| 51 |
+
" device=device\n",
|
| 52 |
+
")"
|
| 53 |
+
],
|
| 54 |
+
"id": "7f7ce71b9fef6b6b",
|
| 55 |
+
"outputs": [],
|
| 56 |
+
"execution_count": 2
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"metadata": {
|
| 60 |
+
"ExecuteTime": {
|
| 61 |
+
"end_time": "2024-11-17T06:56:34.288293Z",
|
| 62 |
+
"start_time": "2024-11-17T06:56:33.872269Z"
|
| 63 |
+
}
|
| 64 |
+
},
|
| 65 |
+
"cell_type": "code",
|
| 66 |
+
"source": [
|
| 67 |
+
"sae_25, _, _ = SAE.from_pretrained(\n",
|
| 68 |
+
" release = \"gemma-scope-2b-pt-res-canonical\",\n",
|
| 69 |
+
" sae_id = \"layer_25/width_16k/canonical\",\n",
|
| 70 |
+
" device=device\n",
|
| 71 |
+
")"
|
| 72 |
+
],
|
| 73 |
+
"id": "4d491284b20f1b80",
|
| 74 |
+
"outputs": [],
|
| 75 |
+
"execution_count": 3
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"metadata": {
|
| 79 |
+
"ExecuteTime": {
|
| 80 |
+
"end_time": "2024-11-17T06:56:34.311745Z",
|
| 81 |
+
"start_time": "2024-11-17T06:56:34.300293Z"
|
| 82 |
+
}
|
| 83 |
+
},
|
| 84 |
+
"cell_type": "code",
|
| 85 |
+
"source": [
|
| 86 |
+
"feature_dict = {\n",
|
| 87 |
+
" \"dog\": {\n",
|
| 88 |
+
" \"sae\": sae_20,\n",
|
| 89 |
+
" \"index\": 12082\n",
|
| 90 |
+
" },\n",
|
| 91 |
+
" \"harry potter4\": {\n",
|
| 92 |
+
" \"sae\": sae_4,\n",
|
| 93 |
+
" \"index\": 12445\n",
|
| 94 |
+
" },\n",
|
| 95 |
+
" \"harry potter10\": {\n",
|
| 96 |
+
" \"sae\": sae_10,\n",
|
| 97 |
+
" \"index\": 6520\n",
|
| 98 |
+
" },\n",
|
| 99 |
+
" \"kindness\": {\n",
|
| 100 |
+
" \"sae\": sae_25,\n",
|
| 101 |
+
" \"index\": 10092\n",
|
| 102 |
+
" },\n",
|
| 103 |
+
" \"yelling\": {\n",
|
| 104 |
+
" \"sae\": sae_20,\n",
|
| 105 |
+
" \"index\": 11859\n",
|
| 106 |
+
" }\n",
|
| 107 |
+
"}"
|
| 108 |
+
],
|
| 109 |
+
"id": "28cfeda14258b526",
|
| 110 |
+
"outputs": [],
|
| 111 |
+
"execution_count": 4
|
| 112 |
+
},
|
| 113 |
+
{
|
| 114 |
+
"metadata": {
|
| 115 |
+
"ExecuteTime": {
|
| 116 |
+
"end_time": "2024-11-17T06:56:35.228585Z",
|
| 117 |
+
"start_time": "2024-11-17T06:56:34.321853Z"
|
| 118 |
+
}
|
| 119 |
+
},
|
| 120 |
+
"cell_type": "code",
|
| 121 |
+
"source": [
|
| 122 |
+
"llm = LanguageModel(\n",
|
| 123 |
+
" \"google/gemma-2-2b-it\", \n",
|
| 124 |
+
" # dtype=torch.bfloat16,\n",
|
| 125 |
+
" # default_padding_side=\"left\",\n",
|
| 126 |
+
" device_map=\"cuda:0\"\n",
|
| 127 |
+
")\n",
|
| 128 |
+
"# \"meta-llama/Llama-3.2-1B-Instruct\",#"
|
| 129 |
+
],
|
| 130 |
+
"id": "998c910d46fffe7a",
|
| 131 |
+
"outputs": [
|
| 132 |
+
{
|
| 133 |
+
"data": {
|
| 134 |
+
"text/plain": [
|
| 135 |
+
"Gemma2ForCausalLM(\n",
|
| 136 |
+
" (model): Gemma2Model(\n",
|
| 137 |
+
" (embed_tokens): Embedding(256000, 2304, padding_idx=0)\n",
|
| 138 |
+
" (layers): ModuleList(\n",
|
| 139 |
+
" (0-25): 26 x Gemma2DecoderLayer(\n",
|
| 140 |
+
" (self_attn): Gemma2Attention(\n",
|
| 141 |
+
" (q_proj): Linear(in_features=2304, out_features=2048, bias=False)\n",
|
| 142 |
+
" (k_proj): Linear(in_features=2304, out_features=1024, bias=False)\n",
|
| 143 |
+
" (v_proj): Linear(in_features=2304, out_features=1024, bias=False)\n",
|
| 144 |
+
" (o_proj): Linear(in_features=2048, out_features=2304, bias=False)\n",
|
| 145 |
+
" (rotary_emb): Gemma2RotaryEmbedding()\n",
|
| 146 |
+
" )\n",
|
| 147 |
+
" (mlp): Gemma2MLP(\n",
|
| 148 |
+
" (gate_proj): Linear(in_features=2304, out_features=9216, bias=False)\n",
|
| 149 |
+
" (up_proj): Linear(in_features=2304, out_features=9216, bias=False)\n",
|
| 150 |
+
" (down_proj): Linear(in_features=9216, out_features=2304, bias=False)\n",
|
| 151 |
+
" (act_fn): PytorchGELUTanh()\n",
|
| 152 |
+
" )\n",
|
| 153 |
+
" (input_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
| 154 |
+
" (pre_feedforward_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
| 155 |
+
" (post_feedforward_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
| 156 |
+
" (post_attention_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
| 157 |
+
" )\n",
|
| 158 |
+
" )\n",
|
| 159 |
+
" (norm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
| 160 |
+
" )\n",
|
| 161 |
+
" (lm_head): Linear(in_features=2304, out_features=256000, bias=False)\n",
|
| 162 |
+
" (generator): WrapperModule()\n",
|
| 163 |
+
")"
|
| 164 |
+
]
|
| 165 |
+
},
|
| 166 |
+
"execution_count": 5,
|
| 167 |
+
"metadata": {},
|
| 168 |
+
"output_type": "execute_result"
|
| 169 |
+
}
|
| 170 |
+
],
|
| 171 |
+
"execution_count": 5
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"metadata": {
|
| 175 |
+
"ExecuteTime": {
|
| 176 |
+
"end_time": "2024-11-17T06:56:35.268613Z",
|
| 177 |
+
"start_time": "2024-11-17T06:56:35.248618Z"
|
| 178 |
+
}
|
| 179 |
+
},
|
| 180 |
+
"cell_type": "code",
|
| 181 |
+
"source": "len(llm.model.layers)",
|
| 182 |
+
"id": "466a5bd33995eaa6",
|
| 183 |
+
"outputs": [
|
| 184 |
+
{
|
| 185 |
+
"data": {
|
| 186 |
+
"text/plain": [
|
| 187 |
+
"26"
|
| 188 |
+
]
|
| 189 |
+
},
|
| 190 |
+
"execution_count": 6,
|
| 191 |
+
"metadata": {},
|
| 192 |
+
"output_type": "execute_result"
|
| 193 |
+
}
|
| 194 |
+
],
|
| 195 |
+
"execution_count": 6
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"metadata": {
|
| 199 |
+
"ExecuteTime": {
|
| 200 |
+
"end_time": "2024-11-17T07:26:43.177202Z",
|
| 201 |
+
"start_time": "2024-11-17T07:26:43.167072Z"
|
| 202 |
+
}
|
| 203 |
+
},
|
| 204 |
+
"cell_type": "code",
|
| 205 |
+
"source": [
|
| 206 |
+
"batched_chat = [\n",
|
| 207 |
+
" [\n",
|
| 208 |
+
" {\"role\": \"user\",\n",
|
| 209 |
+
" \"content\": \"What book is Hermione Granger from?\"}\n",
|
| 210 |
+
" ]\n",
|
| 211 |
+
"]"
|
| 212 |
+
],
|
| 213 |
+
"id": "7178e1930f1cc17f",
|
| 214 |
+
"outputs": [],
|
| 215 |
+
"execution_count": 126
|
| 216 |
+
},
|
| 217 |
+
{
|
| 218 |
+
"metadata": {
|
| 219 |
+
"ExecuteTime": {
|
| 220 |
+
"end_time": "2024-11-17T07:26:43.342263Z",
|
| 221 |
+
"start_time": "2024-11-17T07:26:43.327752Z"
|
| 222 |
+
}
|
| 223 |
+
},
|
| 224 |
+
"cell_type": "code",
|
| 225 |
+
"source": [
|
| 226 |
+
"tokens = llm.tokenizer.apply_chat_template(batched_chat,\n",
|
| 227 |
+
" padding=True,\n",
|
| 228 |
+
" tokenize=True,\n",
|
| 229 |
+
" return_tensors=\"pt\",\n",
|
| 230 |
+
" add_generation_prompt=True\n",
|
| 231 |
+
")\n",
|
| 232 |
+
"tokens"
|
| 233 |
+
],
|
| 234 |
+
"id": "70392d25051117a9",
|
| 235 |
+
"outputs": [
|
| 236 |
+
{
|
| 237 |
+
"data": {
|
| 238 |
+
"text/plain": [
|
| 239 |
+
"tensor([[ 2, 106, 1645, 108, 1841, 2870, 603, 105786, 125492,\n",
|
| 240 |
+
" 774, 235336, 107, 108, 106, 2516, 108]])"
|
| 241 |
+
]
|
| 242 |
+
},
|
| 243 |
+
"execution_count": 127,
|
| 244 |
+
"metadata": {},
|
| 245 |
+
"output_type": "execute_result"
|
| 246 |
+
}
|
| 247 |
+
],
|
| 248 |
+
"execution_count": 127
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"metadata": {
|
| 252 |
+
"ExecuteTime": {
|
| 253 |
+
"end_time": "2024-11-17T07:26:53.366208Z",
|
| 254 |
+
"start_time": "2024-11-17T07:26:53.352196Z"
|
| 255 |
+
}
|
| 256 |
+
},
|
| 257 |
+
"cell_type": "code",
|
| 258 |
+
"source": [
|
| 259 |
+
"feature = feature_dict[\"harry potter4\"]\n",
|
| 260 |
+
"strength = -25\n",
|
| 261 |
+
"steering_vector = feature[\"sae\"].W_dec[feature[\"index\"]] * strength"
|
| 262 |
+
],
|
| 263 |
+
"id": "603bf4dc89e7cfc8",
|
| 264 |
+
"outputs": [],
|
| 265 |
+
"execution_count": 131
|
| 266 |
+
},
|
| 267 |
+
{
|
| 268 |
+
"metadata": {
|
| 269 |
+
"ExecuteTime": {
|
| 270 |
+
"end_time": "2024-11-17T07:26:53.587779Z",
|
| 271 |
+
"start_time": "2024-11-17T07:26:53.572082Z"
|
| 272 |
+
}
|
| 273 |
+
},
|
| 274 |
+
"cell_type": "code",
|
| 275 |
+
"source": "steering_vector",
|
| 276 |
+
"id": "8a3dd6b322f460ff",
|
| 277 |
+
"outputs": [
|
| 278 |
+
{
|
| 279 |
+
"data": {
|
| 280 |
+
"text/plain": [
|
| 281 |
+
"tensor([-0.9424, -0.1070, 0.5881, ..., 0.1192, 0.8251, 0.2128],\n",
|
| 282 |
+
" device='cuda:0', grad_fn=<MulBackward0>)"
|
| 283 |
+
]
|
| 284 |
+
},
|
| 285 |
+
"execution_count": 132,
|
| 286 |
+
"metadata": {},
|
| 287 |
+
"output_type": "execute_result"
|
| 288 |
+
}
|
| 289 |
+
],
|
| 290 |
+
"execution_count": 132
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"metadata": {},
|
| 294 |
+
"cell_type": "markdown",
|
| 295 |
+
"source": [
|
| 296 |
+
"- (input_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
| 297 |
+
"- (pre_feedforward_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
| 298 |
+
"- (post_feedforward_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
| 299 |
+
"- (post_attention_layernorm): Gem"
|
| 300 |
+
],
|
| 301 |
+
"id": "d95ae1ab36f2bb8f"
|
| 302 |
+
},
|
| 303 |
+
{
|
| 304 |
+
"metadata": {
|
| 305 |
+
"ExecuteTime": {
|
| 306 |
+
"end_time": "2024-11-17T07:27:13.573193Z",
|
| 307 |
+
"start_time": "2024-11-17T07:27:07.049580Z"
|
| 308 |
+
}
|
| 309 |
+
},
|
| 310 |
+
"cell_type": "code",
|
| 311 |
+
"source": [
|
| 312 |
+
"with llm.generate(tokens, temperature=1, max_new_tokens=128) as tracer:\n",
|
| 313 |
+
" \n",
|
| 314 |
+
" for i in range(len(llm.model.layers)):\n",
|
| 315 |
+
"\n",
|
| 316 |
+
" module_name = \"post_attention_layernorm\"\n",
|
| 317 |
+
" module = getattr(llm.model.layers[i], module_name)\n",
|
| 318 |
+
"\n",
|
| 319 |
+
" resid_pre_before = module.output.clone().save()\n",
|
| 320 |
+
" module.output[:] = resid_pre_before + steering_vector\n",
|
| 321 |
+
" \n",
|
| 322 |
+
" resid_pre_after = module.output.save()\n",
|
| 323 |
+
" \n",
|
| 324 |
+
" # module.next()\n",
|
| 325 |
+
" \n",
|
| 326 |
+
" output = llm.generator.output.save()\n",
|
| 327 |
+
" \n",
|
| 328 |
+
"# print(\"output tensors:\", output)\n",
|
| 329 |
+
"print(\"output string:\", llm.tokenizer.batch_decode(output.tolist(), skip_special_tokens=False)[0])\n",
|
| 330 |
+
"# print(\"Before:\", resid_pre_before)\n",
|
| 331 |
+
"# print(\"After:\", resid_pre_after)"
|
| 332 |
+
],
|
| 333 |
+
"id": "b990a57221675d1b",
|
| 334 |
+
"outputs": [
|
| 335 |
+
{
|
| 336 |
+
"name": "stdout",
|
| 337 |
+
"output_type": "stream",
|
| 338 |
+
"text": [
|
| 339 |
+
"output string: <bos><start_of_turn>user\n",
|
| 340 |
+
"What book is Hermione Granger from?<end_of_turn>\n",
|
| 341 |
+
"<start_of_turn>model\n",
|
| 342 |
+
". \n",
|
| 343 |
+
" \n",
|
| 344 |
+
" **The following are some of the key features of the game:**\n",
|
| 345 |
+
"\n",
|
| 346 |
+
"* **Multiplayer Mode:** You can play against friends or other players online.\n",
|
| 347 |
+
"* **Customization:** Customize your character's appearance and abilities.\n",
|
| 348 |
+
"* **Story Mode:** A compelling narrative that unfolds as you progress through the game.\n",
|
| 349 |
+
"* **Multiple Game Modes:** Choose from a variety of game modes, including competitive and cooperative.\n",
|
| 350 |
+
"* **Regular Updates:** The game is regularly updated with new content and features.\n",
|
| 351 |
+
"\n",
|
| 352 |
+
"\n",
|
| 353 |
+
"**Overall, the game is a fun and engaging experience that is sure to keep you entertained for\n"
|
| 354 |
+
]
|
| 355 |
+
}
|
| 356 |
+
],
|
| 357 |
+
"execution_count": 134
|
| 358 |
+
},
|
| 359 |
+
{
|
| 360 |
+
"metadata": {
|
| 361 |
+
"ExecuteTime": {
|
| 362 |
+
"end_time": "2024-11-17T06:56:44.790978Z",
|
| 363 |
+
"start_time": "2024-11-17T06:56:44.781384Z"
|
| 364 |
+
}
|
| 365 |
+
},
|
| 366 |
+
"cell_type": "code",
|
| 367 |
+
"source": "",
|
| 368 |
+
"id": "3d15c37787a92ab2",
|
| 369 |
+
"outputs": [],
|
| 370 |
+
"execution_count": null
|
| 371 |
+
}
|
| 372 |
+
],
|
| 373 |
+
"metadata": {
|
| 374 |
+
"kernelspec": {
|
| 375 |
+
"display_name": "Python 3",
|
| 376 |
+
"language": "python",
|
| 377 |
+
"name": "python3"
|
| 378 |
+
},
|
| 379 |
+
"language_info": {
|
| 380 |
+
"codemirror_mode": {
|
| 381 |
+
"name": "ipython",
|
| 382 |
+
"version": 2
|
| 383 |
+
},
|
| 384 |
+
"file_extension": ".py",
|
| 385 |
+
"mimetype": "text/x-python",
|
| 386 |
+
"name": "python",
|
| 387 |
+
"nbconvert_exporter": "python",
|
| 388 |
+
"pygments_lexer": "ipython2",
|
| 389 |
+
"version": "2.7.6"
|
| 390 |
+
}
|
| 391 |
+
},
|
| 392 |
+
"nbformat": 4,
|
| 393 |
+
"nbformat_minor": 5
|
| 394 |
+
}
|
neuroscope/sae_tutorial.ipynb
ADDED
|
@@ -0,0 +1,1781 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"metadata": {
|
| 5 |
+
"ExecuteTime": {
|
| 6 |
+
"end_time": "2024-11-17T01:27:46.664569Z",
|
| 7 |
+
"start_time": "2024-11-17T01:26:59.191804Z"
|
| 8 |
+
}
|
| 9 |
+
},
|
| 10 |
+
"cell_type": "code",
|
| 11 |
+
"source": [
|
| 12 |
+
"# from sae_lens import SAE # pip install sae-lens\n",
|
| 13 |
+
"# \n",
|
| 14 |
+
"# sae, cfg_dict, sparsity = SAE.from_pretrained(\n",
|
| 15 |
+
"# release = \"gemma-scope-2b-pt-res-canonical\",\n",
|
| 16 |
+
"# sae_id = \"layer_20/width_16k/canonical\",\n",
|
| 17 |
+
"# )"
|
| 18 |
+
],
|
| 19 |
+
"id": "a9ebb2c22e1c27ac",
|
| 20 |
+
"outputs": [
|
| 21 |
+
{
|
| 22 |
+
"name": "stderr",
|
| 23 |
+
"output_type": "stream",
|
| 24 |
+
"text": [
|
| 25 |
+
"C:\\Users\\henry\\anaconda3\\envs\\dialignment\\lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
| 26 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
| 27 |
+
]
|
| 28 |
+
}
|
| 29 |
+
],
|
| 30 |
+
"execution_count": 2
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"metadata": {
|
| 34 |
+
"ExecuteTime": {
|
| 35 |
+
"end_time": "2024-11-17T01:38:43.387546Z",
|
| 36 |
+
"start_time": "2024-11-17T01:38:41.072764Z"
|
| 37 |
+
}
|
| 38 |
+
},
|
| 39 |
+
"cell_type": "code",
|
| 40 |
+
"source": [
|
| 41 |
+
"import os\n",
|
| 42 |
+
"import torch\n",
|
| 43 |
+
"from tqdm import tqdm\n",
|
| 44 |
+
"import plotly.express as px"
|
| 45 |
+
],
|
| 46 |
+
"id": "32b364abf1f61fe4",
|
| 47 |
+
"outputs": [],
|
| 48 |
+
"execution_count": 1
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"metadata": {
|
| 52 |
+
"ExecuteTime": {
|
| 53 |
+
"end_time": "2024-11-17T01:38:58.504157Z",
|
| 54 |
+
"start_time": "2024-11-17T01:38:49.162496Z"
|
| 55 |
+
}
|
| 56 |
+
},
|
| 57 |
+
"cell_type": "code",
|
| 58 |
+
"source": [
|
| 59 |
+
"from datasets import load_dataset\n",
|
| 60 |
+
"from transformer_lens import HookedTransformer\n",
|
| 61 |
+
"from sae_lens import SAE\n",
|
| 62 |
+
"device = \"cuda\"\n",
|
| 63 |
+
"\n",
|
| 64 |
+
"model = HookedTransformer.from_pretrained(\"gpt2-small\", device=device)\n",
|
| 65 |
+
"\n",
|
| 66 |
+
"# the cfg dict is returned alongside the SAE since it may contain useful information for analysing the SAE (eg: instantiating an activation store)\n",
|
| 67 |
+
"# Note that this is not the same as the SAEs config dict, rather it is whatever was in the HF repo, from which we can extract the SAE config dict\n",
|
| 68 |
+
"# We also return the feature sparsities which are stored in HF for convenience.\n",
|
| 69 |
+
"sae, cfg_dict, sparsity = SAE.from_pretrained(\n",
|
| 70 |
+
" release=\"gpt2-small-res-jb\", # see other options in sae_lens/pretrained_saes.yaml\n",
|
| 71 |
+
" sae_id=\"blocks.8.hook_resid_pre\", # won't always be a hook point\n",
|
| 72 |
+
" device=device,\n",
|
| 73 |
+
")"
|
| 74 |
+
],
|
| 75 |
+
"id": "e76a79976976d7ea",
|
| 76 |
+
"outputs": [
|
| 77 |
+
{
|
| 78 |
+
"name": "stdout",
|
| 79 |
+
"output_type": "stream",
|
| 80 |
+
"text": [
|
| 81 |
+
"Loaded pretrained model gpt2-small into HookedTransformer\n"
|
| 82 |
+
]
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
"name": "stderr",
|
| 86 |
+
"output_type": "stream",
|
| 87 |
+
"text": [
|
| 88 |
+
"C:\\Users\\henry\\anaconda3\\envs\\dialignment\\lib\\site-packages\\sae_lens\\sae.py:145: UserWarning: \n",
|
| 89 |
+
"This SAE has non-empty model_from_pretrained_kwargs. \n",
|
| 90 |
+
"For optimal performance, load the model like so:\n",
|
| 91 |
+
"model = HookedSAETransformer.from_pretrained_no_processing(..., **cfg.model_from_pretrained_kwargs)\n",
|
| 92 |
+
" warnings.warn(\n"
|
| 93 |
+
]
|
| 94 |
+
}
|
| 95 |
+
],
|
| 96 |
+
"execution_count": 2
|
| 97 |
+
},
|
| 98 |
+
{
|
| 99 |
+
"metadata": {
|
| 100 |
+
"ExecuteTime": {
|
| 101 |
+
"end_time": "2024-11-17T01:38:59.683875Z",
|
| 102 |
+
"start_time": "2024-11-17T01:38:58.587175Z"
|
| 103 |
+
}
|
| 104 |
+
},
|
| 105 |
+
"cell_type": "code",
|
| 106 |
+
"source": [
|
| 107 |
+
"from transformer_lens.utils import tokenize_and_concatenate\n",
|
| 108 |
+
"\n",
|
| 109 |
+
"dataset = load_dataset(\n",
|
| 110 |
+
" path=\"NeelNanda/pile-10k\",\n",
|
| 111 |
+
" split=\"train\",\n",
|
| 112 |
+
" streaming=False,\n",
|
| 113 |
+
")\n",
|
| 114 |
+
"\n",
|
| 115 |
+
"token_dataset = tokenize_and_concatenate(\n",
|
| 116 |
+
" dataset=dataset, # type: ignore\n",
|
| 117 |
+
" tokenizer=model.tokenizer, # type: ignore\n",
|
| 118 |
+
" streaming=True,\n",
|
| 119 |
+
" max_length=sae.cfg.context_size,\n",
|
| 120 |
+
" add_bos_token=sae.cfg.prepend_bos,\n",
|
| 121 |
+
")"
|
| 122 |
+
],
|
| 123 |
+
"id": "f1a688694a1c7e16",
|
| 124 |
+
"outputs": [],
|
| 125 |
+
"execution_count": 3
|
| 126 |
+
},
|
| 127 |
+
{
|
| 128 |
+
"metadata": {
|
| 129 |
+
"ExecuteTime": {
|
| 130 |
+
"end_time": "2024-11-17T01:39:25.256507Z",
|
| 131 |
+
"start_time": "2024-11-17T01:39:24.997695Z"
|
| 132 |
+
}
|
| 133 |
+
},
|
| 134 |
+
"cell_type": "code",
|
| 135 |
+
"source": [
|
| 136 |
+
"sae.eval() # prevents error if we're expecting a dead neuron mask for who grads\n",
|
| 137 |
+
"print(\"?\")\n",
|
| 138 |
+
"with torch.no_grad():\n",
|
| 139 |
+
" # activation store can give us tokens.\n",
|
| 140 |
+
" batch_tokens = token_dataset[:32][\"tokens\"]\n",
|
| 141 |
+
" _, cache = model.run_with_cache(batch_tokens, prepend_bos=True)\n",
|
| 142 |
+
"\n",
|
| 143 |
+
" # Use the SAE\n",
|
| 144 |
+
" feature_acts = sae.encode(cache[sae.cfg.hook_name])\n",
|
| 145 |
+
" sae_out = sae.decode(feature_acts)\n",
|
| 146 |
+
"\n",
|
| 147 |
+
" # save some room\n",
|
| 148 |
+
" del cache\n",
|
| 149 |
+
"\n",
|
| 150 |
+
" # ignore the bos token, get the number of features that activated in each token, averaged accross batch and position\n",
|
| 151 |
+
" l0 = (feature_acts[:, 1:] > 0).float().sum(-1).detach()\n",
|
| 152 |
+
" print(\"average l0\", l0.mean().item())\n",
|
| 153 |
+
" px.histogram(l0.flatten().cpu().numpy()).show()"
|
| 154 |
+
],
|
| 155 |
+
"id": "a1f9a9f823253259",
|
| 156 |
+
"outputs": [
|
| 157 |
+
{
|
| 158 |
+
"name": "stdout",
|
| 159 |
+
"output_type": "stream",
|
| 160 |
+
"text": [
|
| 161 |
+
"?\n",
|
| 162 |
+
"average l0 64.1279525756836\n"
|
| 163 |
+
]
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"data": {
|
| 167 |
+
"application/vnd.plotly.v1+json": {
|
| 168 |
+
"data": [
|
| 169 |
+
{
|
| 170 |
+
"alignmentgroup": "True",
|
| 171 |
+
"bingroup": "x",
|
| 172 |
+
"hovertemplate": "variable=0<br>value=%{x}<br>count=%{y}<extra></extra>",
|
| 173 |
+
"legendgroup": "0",
|
| 174 |
+
"marker": {
|
| 175 |
+
"color": "#636efa",
|
| 176 |
+
"pattern": {
|
| 177 |
+
"shape": ""
|
| 178 |
+
}
|
| 179 |
+
},
|
| 180 |
+
"name": "0",
|
| 181 |
+
"offsetgroup": "0",
|
| 182 |
+
"orientation": "v",
|
| 183 |
+
"showlegend": true,
|
| 184 |
+
"x": [
|
| 185 |
+
15.0,
|
| 186 |
+
25.0,
|
| 187 |
+
51.0,
|
| 188 |
+
84.0,
|
| 189 |
+
88.0,
|
| 190 |
+
100.0,
|
| 191 |
+
85.0,
|
| 192 |
+
60.0,
|
| 193 |
+
49.0,
|
| 194 |
+
47.0,
|
| 195 |
+
36.0,
|
| 196 |
+
37.0,
|
| 197 |
+
72.0,
|
| 198 |
+
88.0,
|
| 199 |
+
81.0,
|
| 200 |
+
74.0,
|
| 201 |
+
50.0,
|
| 202 |
+
66.0,
|
| 203 |
+
59.0,
|
| 204 |
+
38.0,
|
| 205 |
+
57.0,
|
| 206 |
+
67.0,
|
| 207 |
+
38.0,
|
| 208 |
+
68.0,
|
| 209 |
+
54.0,
|
| 210 |
+
68.0,
|
| 211 |
+
62.0,
|
| 212 |
+
74.0,
|
| 213 |
+
66.0,
|
| 214 |
+
53.0,
|
| 215 |
+
85.0,
|
| 216 |
+
76.0,
|
| 217 |
+
92.0,
|
| 218 |
+
59.0,
|
| 219 |
+
73.0,
|
| 220 |
+
52.0,
|
| 221 |
+
46.0,
|
| 222 |
+
51.0,
|
| 223 |
+
42.0,
|
| 224 |
+
81.0,
|
| 225 |
+
49.0,
|
| 226 |
+
42.0,
|
| 227 |
+
77.0,
|
| 228 |
+
90.0,
|
| 229 |
+
60.0,
|
| 230 |
+
93.0,
|
| 231 |
+
70.0,
|
| 232 |
+
77.0,
|
| 233 |
+
70.0,
|
| 234 |
+
59.0,
|
| 235 |
+
74.0,
|
| 236 |
+
66.0,
|
| 237 |
+
71.0,
|
| 238 |
+
51.0,
|
| 239 |
+
43.0,
|
| 240 |
+
44.0,
|
| 241 |
+
39.0,
|
| 242 |
+
22.0,
|
| 243 |
+
30.0,
|
| 244 |
+
44.0,
|
| 245 |
+
44.0,
|
| 246 |
+
34.0,
|
| 247 |
+
59.0,
|
| 248 |
+
36.0,
|
| 249 |
+
52.0,
|
| 250 |
+
60.0,
|
| 251 |
+
57.0,
|
| 252 |
+
45.0,
|
| 253 |
+
62.0,
|
| 254 |
+
55.0,
|
| 255 |
+
75.0,
|
| 256 |
+
43.0,
|
| 257 |
+
22.0,
|
| 258 |
+
37.0,
|
| 259 |
+
41.0,
|
| 260 |
+
40.0,
|
| 261 |
+
60.0,
|
| 262 |
+
50.0,
|
| 263 |
+
57.0,
|
| 264 |
+
74.0,
|
| 265 |
+
53.0,
|
| 266 |
+
84.0,
|
| 267 |
+
120.0,
|
| 268 |
+
78.0,
|
| 269 |
+
76.0,
|
| 270 |
+
67.0,
|
| 271 |
+
72.0,
|
| 272 |
+
68.0,
|
| 273 |
+
101.0,
|
| 274 |
+
78.0,
|
| 275 |
+
87.0,
|
| 276 |
+
99.0,
|
| 277 |
+
85.0,
|
| 278 |
+
47.0,
|
| 279 |
+
48.0,
|
| 280 |
+
30.0,
|
| 281 |
+
76.0,
|
| 282 |
+
65.0,
|
| 283 |
+
63.0,
|
| 284 |
+
49.0,
|
| 285 |
+
45.0,
|
| 286 |
+
70.0,
|
| 287 |
+
79.0,
|
| 288 |
+
76.0,
|
| 289 |
+
74.0,
|
| 290 |
+
71.0,
|
| 291 |
+
66.0,
|
| 292 |
+
69.0,
|
| 293 |
+
97.0,
|
| 294 |
+
81.0,
|
| 295 |
+
65.0,
|
| 296 |
+
69.0,
|
| 297 |
+
83.0,
|
| 298 |
+
84.0,
|
| 299 |
+
65.0,
|
| 300 |
+
58.0,
|
| 301 |
+
77.0,
|
| 302 |
+
63.0,
|
| 303 |
+
66.0,
|
| 304 |
+
64.0,
|
| 305 |
+
64.0,
|
| 306 |
+
72.0,
|
| 307 |
+
66.0,
|
| 308 |
+
90.0,
|
| 309 |
+
75.0,
|
| 310 |
+
59.0,
|
| 311 |
+
75.0,
|
| 312 |
+
27.0,
|
| 313 |
+
47.0,
|
| 314 |
+
45.0,
|
| 315 |
+
55.0,
|
| 316 |
+
54.0,
|
| 317 |
+
76.0,
|
| 318 |
+
66.0,
|
| 319 |
+
90.0,
|
| 320 |
+
98.0,
|
| 321 |
+
66.0,
|
| 322 |
+
77.0,
|
| 323 |
+
71.0,
|
| 324 |
+
79.0,
|
| 325 |
+
80.0,
|
| 326 |
+
60.0,
|
| 327 |
+
63.0,
|
| 328 |
+
91.0,
|
| 329 |
+
82.0,
|
| 330 |
+
65.0,
|
| 331 |
+
59.0,
|
| 332 |
+
70.0,
|
| 333 |
+
63.0,
|
| 334 |
+
73.0,
|
| 335 |
+
72.0,
|
| 336 |
+
63.0,
|
| 337 |
+
87.0,
|
| 338 |
+
81.0,
|
| 339 |
+
78.0,
|
| 340 |
+
86.0,
|
| 341 |
+
61.0,
|
| 342 |
+
59.0,
|
| 343 |
+
98.0,
|
| 344 |
+
84.0,
|
| 345 |
+
65.0,
|
| 346 |
+
63.0,
|
| 347 |
+
51.0,
|
| 348 |
+
63.0,
|
| 349 |
+
61.0,
|
| 350 |
+
72.0,
|
| 351 |
+
78.0,
|
| 352 |
+
85.0,
|
| 353 |
+
79.0,
|
| 354 |
+
75.0,
|
| 355 |
+
86.0,
|
| 356 |
+
51.0,
|
| 357 |
+
37.0,
|
| 358 |
+
48.0,
|
| 359 |
+
51.0,
|
| 360 |
+
49.0,
|
| 361 |
+
54.0,
|
| 362 |
+
58.0,
|
| 363 |
+
67.0,
|
| 364 |
+
41.0,
|
| 365 |
+
49.0,
|
| 366 |
+
68.0,
|
| 367 |
+
68.0,
|
| 368 |
+
88.0,
|
| 369 |
+
40.0,
|
| 370 |
+
42.0,
|
| 371 |
+
49.0,
|
| 372 |
+
90.0,
|
| 373 |
+
49.0,
|
| 374 |
+
65.0,
|
| 375 |
+
87.0,
|
| 376 |
+
77.0,
|
| 377 |
+
39.0,
|
| 378 |
+
75.0,
|
| 379 |
+
54.0,
|
| 380 |
+
70.0,
|
| 381 |
+
57.0,
|
| 382 |
+
43.0,
|
| 383 |
+
96.0,
|
| 384 |
+
51.0,
|
| 385 |
+
45.0,
|
| 386 |
+
61.0,
|
| 387 |
+
63.0,
|
| 388 |
+
61.0,
|
| 389 |
+
90.0,
|
| 390 |
+
52.0,
|
| 391 |
+
89.0,
|
| 392 |
+
60.0,
|
| 393 |
+
77.0,
|
| 394 |
+
62.0,
|
| 395 |
+
71.0,
|
| 396 |
+
62.0,
|
| 397 |
+
74.0,
|
| 398 |
+
105.0,
|
| 399 |
+
89.0,
|
| 400 |
+
118.0,
|
| 401 |
+
71.0,
|
| 402 |
+
67.0,
|
| 403 |
+
45.0,
|
| 404 |
+
53.0,
|
| 405 |
+
58.0,
|
| 406 |
+
82.0,
|
| 407 |
+
76.0,
|
| 408 |
+
45.0,
|
| 409 |
+
53.0,
|
| 410 |
+
43.0,
|
| 411 |
+
71.0,
|
| 412 |
+
86.0,
|
| 413 |
+
71.0,
|
| 414 |
+
51.0,
|
| 415 |
+
48.0,
|
| 416 |
+
51.0,
|
| 417 |
+
84.0,
|
| 418 |
+
79.0,
|
| 419 |
+
87.0,
|
| 420 |
+
78.0,
|
| 421 |
+
68.0,
|
| 422 |
+
94.0,
|
| 423 |
+
74.0,
|
| 424 |
+
64.0,
|
| 425 |
+
68.0,
|
| 426 |
+
38.0,
|
| 427 |
+
53.0,
|
| 428 |
+
57.0,
|
| 429 |
+
57.0,
|
| 430 |
+
78.0,
|
| 431 |
+
68.0,
|
| 432 |
+
39.0,
|
| 433 |
+
44.0,
|
| 434 |
+
49.0,
|
| 435 |
+
57.0,
|
| 436 |
+
65.0,
|
| 437 |
+
62.0,
|
| 438 |
+
60.0,
|
| 439 |
+
30.0,
|
| 440 |
+
49.0,
|
| 441 |
+
59.0,
|
| 442 |
+
66.0,
|
| 443 |
+
71.0,
|
| 444 |
+
55.0,
|
| 445 |
+
66.0,
|
| 446 |
+
66.0,
|
| 447 |
+
63.0,
|
| 448 |
+
52.0,
|
| 449 |
+
84.0,
|
| 450 |
+
76.0,
|
| 451 |
+
90.0,
|
| 452 |
+
73.0,
|
| 453 |
+
71.0,
|
| 454 |
+
85.0,
|
| 455 |
+
77.0,
|
| 456 |
+
82.0,
|
| 457 |
+
72.0,
|
| 458 |
+
68.0,
|
| 459 |
+
58.0,
|
| 460 |
+
46.0,
|
| 461 |
+
49.0,
|
| 462 |
+
57.0,
|
| 463 |
+
75.0,
|
| 464 |
+
46.0,
|
| 465 |
+
64.0,
|
| 466 |
+
53.0,
|
| 467 |
+
55.0,
|
| 468 |
+
67.0,
|
| 469 |
+
79.0,
|
| 470 |
+
88.0,
|
| 471 |
+
72.0,
|
| 472 |
+
58.0,
|
| 473 |
+
28.0,
|
| 474 |
+
39.0,
|
| 475 |
+
44.0,
|
| 476 |
+
47.0,
|
| 477 |
+
92.0,
|
| 478 |
+
98.0,
|
| 479 |
+
72.0,
|
| 480 |
+
83.0,
|
| 481 |
+
25.0,
|
| 482 |
+
37.0,
|
| 483 |
+
82.0,
|
| 484 |
+
75.0,
|
| 485 |
+
55.0,
|
| 486 |
+
69.0,
|
| 487 |
+
80.0,
|
| 488 |
+
82.0,
|
| 489 |
+
71.0,
|
| 490 |
+
64.0,
|
| 491 |
+
50.0,
|
| 492 |
+
96.0,
|
| 493 |
+
71.0,
|
| 494 |
+
71.0,
|
| 495 |
+
74.0,
|
| 496 |
+
75.0,
|
| 497 |
+
82.0,
|
| 498 |
+
86.0,
|
| 499 |
+
79.0,
|
| 500 |
+
85.0,
|
| 501 |
+
83.0,
|
| 502 |
+
72.0,
|
| 503 |
+
68.0,
|
| 504 |
+
55.0,
|
| 505 |
+
40.0,
|
| 506 |
+
49.0,
|
| 507 |
+
76.0,
|
| 508 |
+
82.0,
|
| 509 |
+
83.0,
|
| 510 |
+
78.0,
|
| 511 |
+
70.0,
|
| 512 |
+
108.0,
|
| 513 |
+
81.0,
|
| 514 |
+
54.0,
|
| 515 |
+
22.0,
|
| 516 |
+
40.0,
|
| 517 |
+
41.0,
|
| 518 |
+
59.0,
|
| 519 |
+
42.0,
|
| 520 |
+
48.0,
|
| 521 |
+
68.0,
|
| 522 |
+
70.0,
|
| 523 |
+
95.0,
|
| 524 |
+
120.0,
|
| 525 |
+
75.0,
|
| 526 |
+
52.0,
|
| 527 |
+
32.0,
|
| 528 |
+
33.0,
|
| 529 |
+
21.0,
|
| 530 |
+
69.0,
|
| 531 |
+
57.0,
|
| 532 |
+
52.0,
|
| 533 |
+
55.0,
|
| 534 |
+
48.0,
|
| 535 |
+
47.0,
|
| 536 |
+
91.0,
|
| 537 |
+
60.0,
|
| 538 |
+
68.0,
|
| 539 |
+
54.0,
|
| 540 |
+
62.0,
|
| 541 |
+
65.0,
|
| 542 |
+
75.0,
|
| 543 |
+
74.0,
|
| 544 |
+
73.0,
|
| 545 |
+
71.0,
|
| 546 |
+
87.0,
|
| 547 |
+
61.0,
|
| 548 |
+
57.0,
|
| 549 |
+
75.0,
|
| 550 |
+
83.0,
|
| 551 |
+
73.0,
|
| 552 |
+
104.0,
|
| 553 |
+
86.0,
|
| 554 |
+
112.0,
|
| 555 |
+
82.0,
|
| 556 |
+
74.0,
|
| 557 |
+
72.0,
|
| 558 |
+
53.0,
|
| 559 |
+
54.0,
|
| 560 |
+
27.0,
|
| 561 |
+
35.0,
|
| 562 |
+
61.0,
|
| 563 |
+
65.0,
|
| 564 |
+
70.0,
|
| 565 |
+
70.0,
|
| 566 |
+
6.0,
|
| 567 |
+
26.0,
|
| 568 |
+
21.0,
|
| 569 |
+
42.0,
|
| 570 |
+
71.0,
|
| 571 |
+
87.0,
|
| 572 |
+
32.0,
|
| 573 |
+
45.0,
|
| 574 |
+
88.0,
|
| 575 |
+
65.0,
|
| 576 |
+
74.0,
|
| 577 |
+
62.0,
|
| 578 |
+
68.0,
|
| 579 |
+
65.0,
|
| 580 |
+
55.0,
|
| 581 |
+
40.0,
|
| 582 |
+
38.0,
|
| 583 |
+
28.0,
|
| 584 |
+
34.0,
|
| 585 |
+
34.0,
|
| 586 |
+
42.0,
|
| 587 |
+
47.0,
|
| 588 |
+
78.0,
|
| 589 |
+
47.0,
|
| 590 |
+
72.0,
|
| 591 |
+
78.0,
|
| 592 |
+
61.0,
|
| 593 |
+
79.0,
|
| 594 |
+
106.0,
|
| 595 |
+
75.0,
|
| 596 |
+
95.0,
|
| 597 |
+
68.0,
|
| 598 |
+
70.0,
|
| 599 |
+
49.0,
|
| 600 |
+
54.0,
|
| 601 |
+
69.0,
|
| 602 |
+
73.0,
|
| 603 |
+
85.0,
|
| 604 |
+
69.0,
|
| 605 |
+
71.0,
|
| 606 |
+
56.0,
|
| 607 |
+
64.0,
|
| 608 |
+
77.0,
|
| 609 |
+
84.0,
|
| 610 |
+
79.0,
|
| 611 |
+
90.0,
|
| 612 |
+
86.0,
|
| 613 |
+
79.0,
|
| 614 |
+
34.0,
|
| 615 |
+
27.0,
|
| 616 |
+
29.0,
|
| 617 |
+
37.0,
|
| 618 |
+
46.0,
|
| 619 |
+
55.0,
|
| 620 |
+
53.0,
|
| 621 |
+
48.0,
|
| 622 |
+
48.0,
|
| 623 |
+
58.0,
|
| 624 |
+
58.0,
|
| 625 |
+
52.0,
|
| 626 |
+
61.0,
|
| 627 |
+
58.0,
|
| 628 |
+
42.0,
|
| 629 |
+
75.0,
|
| 630 |
+
83.0,
|
| 631 |
+
60.0,
|
| 632 |
+
63.0,
|
| 633 |
+
39.0,
|
| 634 |
+
33.0,
|
| 635 |
+
52.0,
|
| 636 |
+
46.0,
|
| 637 |
+
55.0,
|
| 638 |
+
29.0,
|
| 639 |
+
34.0,
|
| 640 |
+
51.0,
|
| 641 |
+
54.0,
|
| 642 |
+
64.0,
|
| 643 |
+
90.0,
|
| 644 |
+
63.0,
|
| 645 |
+
59.0,
|
| 646 |
+
91.0,
|
| 647 |
+
62.0,
|
| 648 |
+
77.0,
|
| 649 |
+
87.0,
|
| 650 |
+
74.0,
|
| 651 |
+
39.0,
|
| 652 |
+
44.0,
|
| 653 |
+
32.0,
|
| 654 |
+
84.0,
|
| 655 |
+
53.0,
|
| 656 |
+
32.0,
|
| 657 |
+
41.0,
|
| 658 |
+
46.0,
|
| 659 |
+
45.0,
|
| 660 |
+
48.0,
|
| 661 |
+
68.0,
|
| 662 |
+
78.0,
|
| 663 |
+
41.0,
|
| 664 |
+
45.0,
|
| 665 |
+
54.0,
|
| 666 |
+
72.0,
|
| 667 |
+
61.0,
|
| 668 |
+
70.0,
|
| 669 |
+
62.0,
|
| 670 |
+
54.0,
|
| 671 |
+
71.0,
|
| 672 |
+
80.0,
|
| 673 |
+
92.0,
|
| 674 |
+
89.0,
|
| 675 |
+
73.0,
|
| 676 |
+
99.0,
|
| 677 |
+
85.0,
|
| 678 |
+
83.0,
|
| 679 |
+
92.0,
|
| 680 |
+
79.0,
|
| 681 |
+
67.0,
|
| 682 |
+
68.0,
|
| 683 |
+
78.0,
|
| 684 |
+
90.0,
|
| 685 |
+
72.0,
|
| 686 |
+
80.0,
|
| 687 |
+
95.0,
|
| 688 |
+
78.0,
|
| 689 |
+
75.0,
|
| 690 |
+
48.0,
|
| 691 |
+
47.0,
|
| 692 |
+
61.0
|
| 693 |
+
],
|
| 694 |
+
"xaxis": "x",
|
| 695 |
+
"yaxis": "y",
|
| 696 |
+
"type": "histogram"
|
| 697 |
+
}
|
| 698 |
+
],
|
| 699 |
+
"layout": {
|
| 700 |
+
"template": {
|
| 701 |
+
"data": {
|
| 702 |
+
"histogram2dcontour": [
|
| 703 |
+
{
|
| 704 |
+
"type": "histogram2dcontour",
|
| 705 |
+
"colorbar": {
|
| 706 |
+
"outlinewidth": 0,
|
| 707 |
+
"ticks": ""
|
| 708 |
+
},
|
| 709 |
+
"colorscale": [
|
| 710 |
+
[
|
| 711 |
+
0.0,
|
| 712 |
+
"#0d0887"
|
| 713 |
+
],
|
| 714 |
+
[
|
| 715 |
+
0.1111111111111111,
|
| 716 |
+
"#46039f"
|
| 717 |
+
],
|
| 718 |
+
[
|
| 719 |
+
0.2222222222222222,
|
| 720 |
+
"#7201a8"
|
| 721 |
+
],
|
| 722 |
+
[
|
| 723 |
+
0.3333333333333333,
|
| 724 |
+
"#9c179e"
|
| 725 |
+
],
|
| 726 |
+
[
|
| 727 |
+
0.4444444444444444,
|
| 728 |
+
"#bd3786"
|
| 729 |
+
],
|
| 730 |
+
[
|
| 731 |
+
0.5555555555555556,
|
| 732 |
+
"#d8576b"
|
| 733 |
+
],
|
| 734 |
+
[
|
| 735 |
+
0.6666666666666666,
|
| 736 |
+
"#ed7953"
|
| 737 |
+
],
|
| 738 |
+
[
|
| 739 |
+
0.7777777777777778,
|
| 740 |
+
"#fb9f3a"
|
| 741 |
+
],
|
| 742 |
+
[
|
| 743 |
+
0.8888888888888888,
|
| 744 |
+
"#fdca26"
|
| 745 |
+
],
|
| 746 |
+
[
|
| 747 |
+
1.0,
|
| 748 |
+
"#f0f921"
|
| 749 |
+
]
|
| 750 |
+
]
|
| 751 |
+
}
|
| 752 |
+
],
|
| 753 |
+
"choropleth": [
|
| 754 |
+
{
|
| 755 |
+
"type": "choropleth",
|
| 756 |
+
"colorbar": {
|
| 757 |
+
"outlinewidth": 0,
|
| 758 |
+
"ticks": ""
|
| 759 |
+
}
|
| 760 |
+
}
|
| 761 |
+
],
|
| 762 |
+
"histogram2d": [
|
| 763 |
+
{
|
| 764 |
+
"type": "histogram2d",
|
| 765 |
+
"colorbar": {
|
| 766 |
+
"outlinewidth": 0,
|
| 767 |
+
"ticks": ""
|
| 768 |
+
},
|
| 769 |
+
"colorscale": [
|
| 770 |
+
[
|
| 771 |
+
0.0,
|
| 772 |
+
"#0d0887"
|
| 773 |
+
],
|
| 774 |
+
[
|
| 775 |
+
0.1111111111111111,
|
| 776 |
+
"#46039f"
|
| 777 |
+
],
|
| 778 |
+
[
|
| 779 |
+
0.2222222222222222,
|
| 780 |
+
"#7201a8"
|
| 781 |
+
],
|
| 782 |
+
[
|
| 783 |
+
0.3333333333333333,
|
| 784 |
+
"#9c179e"
|
| 785 |
+
],
|
| 786 |
+
[
|
| 787 |
+
0.4444444444444444,
|
| 788 |
+
"#bd3786"
|
| 789 |
+
],
|
| 790 |
+
[
|
| 791 |
+
0.5555555555555556,
|
| 792 |
+
"#d8576b"
|
| 793 |
+
],
|
| 794 |
+
[
|
| 795 |
+
0.6666666666666666,
|
| 796 |
+
"#ed7953"
|
| 797 |
+
],
|
| 798 |
+
[
|
| 799 |
+
0.7777777777777778,
|
| 800 |
+
"#fb9f3a"
|
| 801 |
+
],
|
| 802 |
+
[
|
| 803 |
+
0.8888888888888888,
|
| 804 |
+
"#fdca26"
|
| 805 |
+
],
|
| 806 |
+
[
|
| 807 |
+
1.0,
|
| 808 |
+
"#f0f921"
|
| 809 |
+
]
|
| 810 |
+
]
|
| 811 |
+
}
|
| 812 |
+
],
|
| 813 |
+
"heatmap": [
|
| 814 |
+
{
|
| 815 |
+
"type": "heatmap",
|
| 816 |
+
"colorbar": {
|
| 817 |
+
"outlinewidth": 0,
|
| 818 |
+
"ticks": ""
|
| 819 |
+
},
|
| 820 |
+
"colorscale": [
|
| 821 |
+
[
|
| 822 |
+
0.0,
|
| 823 |
+
"#0d0887"
|
| 824 |
+
],
|
| 825 |
+
[
|
| 826 |
+
0.1111111111111111,
|
| 827 |
+
"#46039f"
|
| 828 |
+
],
|
| 829 |
+
[
|
| 830 |
+
0.2222222222222222,
|
| 831 |
+
"#7201a8"
|
| 832 |
+
],
|
| 833 |
+
[
|
| 834 |
+
0.3333333333333333,
|
| 835 |
+
"#9c179e"
|
| 836 |
+
],
|
| 837 |
+
[
|
| 838 |
+
0.4444444444444444,
|
| 839 |
+
"#bd3786"
|
| 840 |
+
],
|
| 841 |
+
[
|
| 842 |
+
0.5555555555555556,
|
| 843 |
+
"#d8576b"
|
| 844 |
+
],
|
| 845 |
+
[
|
| 846 |
+
0.6666666666666666,
|
| 847 |
+
"#ed7953"
|
| 848 |
+
],
|
| 849 |
+
[
|
| 850 |
+
0.7777777777777778,
|
| 851 |
+
"#fb9f3a"
|
| 852 |
+
],
|
| 853 |
+
[
|
| 854 |
+
0.8888888888888888,
|
| 855 |
+
"#fdca26"
|
| 856 |
+
],
|
| 857 |
+
[
|
| 858 |
+
1.0,
|
| 859 |
+
"#f0f921"
|
| 860 |
+
]
|
| 861 |
+
]
|
| 862 |
+
}
|
| 863 |
+
],
|
| 864 |
+
"heatmapgl": [
|
| 865 |
+
{
|
| 866 |
+
"type": "heatmapgl",
|
| 867 |
+
"colorbar": {
|
| 868 |
+
"outlinewidth": 0,
|
| 869 |
+
"ticks": ""
|
| 870 |
+
},
|
| 871 |
+
"colorscale": [
|
| 872 |
+
[
|
| 873 |
+
0.0,
|
| 874 |
+
"#0d0887"
|
| 875 |
+
],
|
| 876 |
+
[
|
| 877 |
+
0.1111111111111111,
|
| 878 |
+
"#46039f"
|
| 879 |
+
],
|
| 880 |
+
[
|
| 881 |
+
0.2222222222222222,
|
| 882 |
+
"#7201a8"
|
| 883 |
+
],
|
| 884 |
+
[
|
| 885 |
+
0.3333333333333333,
|
| 886 |
+
"#9c179e"
|
| 887 |
+
],
|
| 888 |
+
[
|
| 889 |
+
0.4444444444444444,
|
| 890 |
+
"#bd3786"
|
| 891 |
+
],
|
| 892 |
+
[
|
| 893 |
+
0.5555555555555556,
|
| 894 |
+
"#d8576b"
|
| 895 |
+
],
|
| 896 |
+
[
|
| 897 |
+
0.6666666666666666,
|
| 898 |
+
"#ed7953"
|
| 899 |
+
],
|
| 900 |
+
[
|
| 901 |
+
0.7777777777777778,
|
| 902 |
+
"#fb9f3a"
|
| 903 |
+
],
|
| 904 |
+
[
|
| 905 |
+
0.8888888888888888,
|
| 906 |
+
"#fdca26"
|
| 907 |
+
],
|
| 908 |
+
[
|
| 909 |
+
1.0,
|
| 910 |
+
"#f0f921"
|
| 911 |
+
]
|
| 912 |
+
]
|
| 913 |
+
}
|
| 914 |
+
],
|
| 915 |
+
"contourcarpet": [
|
| 916 |
+
{
|
| 917 |
+
"type": "contourcarpet",
|
| 918 |
+
"colorbar": {
|
| 919 |
+
"outlinewidth": 0,
|
| 920 |
+
"ticks": ""
|
| 921 |
+
}
|
| 922 |
+
}
|
| 923 |
+
],
|
| 924 |
+
"contour": [
|
| 925 |
+
{
|
| 926 |
+
"type": "contour",
|
| 927 |
+
"colorbar": {
|
| 928 |
+
"outlinewidth": 0,
|
| 929 |
+
"ticks": ""
|
| 930 |
+
},
|
| 931 |
+
"colorscale": [
|
| 932 |
+
[
|
| 933 |
+
0.0,
|
| 934 |
+
"#0d0887"
|
| 935 |
+
],
|
| 936 |
+
[
|
| 937 |
+
0.1111111111111111,
|
| 938 |
+
"#46039f"
|
| 939 |
+
],
|
| 940 |
+
[
|
| 941 |
+
0.2222222222222222,
|
| 942 |
+
"#7201a8"
|
| 943 |
+
],
|
| 944 |
+
[
|
| 945 |
+
0.3333333333333333,
|
| 946 |
+
"#9c179e"
|
| 947 |
+
],
|
| 948 |
+
[
|
| 949 |
+
0.4444444444444444,
|
| 950 |
+
"#bd3786"
|
| 951 |
+
],
|
| 952 |
+
[
|
| 953 |
+
0.5555555555555556,
|
| 954 |
+
"#d8576b"
|
| 955 |
+
],
|
| 956 |
+
[
|
| 957 |
+
0.6666666666666666,
|
| 958 |
+
"#ed7953"
|
| 959 |
+
],
|
| 960 |
+
[
|
| 961 |
+
0.7777777777777778,
|
| 962 |
+
"#fb9f3a"
|
| 963 |
+
],
|
| 964 |
+
[
|
| 965 |
+
0.8888888888888888,
|
| 966 |
+
"#fdca26"
|
| 967 |
+
],
|
| 968 |
+
[
|
| 969 |
+
1.0,
|
| 970 |
+
"#f0f921"
|
| 971 |
+
]
|
| 972 |
+
]
|
| 973 |
+
}
|
| 974 |
+
],
|
| 975 |
+
"surface": [
|
| 976 |
+
{
|
| 977 |
+
"type": "surface",
|
| 978 |
+
"colorbar": {
|
| 979 |
+
"outlinewidth": 0,
|
| 980 |
+
"ticks": ""
|
| 981 |
+
},
|
| 982 |
+
"colorscale": [
|
| 983 |
+
[
|
| 984 |
+
0.0,
|
| 985 |
+
"#0d0887"
|
| 986 |
+
],
|
| 987 |
+
[
|
| 988 |
+
0.1111111111111111,
|
| 989 |
+
"#46039f"
|
| 990 |
+
],
|
| 991 |
+
[
|
| 992 |
+
0.2222222222222222,
|
| 993 |
+
"#7201a8"
|
| 994 |
+
],
|
| 995 |
+
[
|
| 996 |
+
0.3333333333333333,
|
| 997 |
+
"#9c179e"
|
| 998 |
+
],
|
| 999 |
+
[
|
| 1000 |
+
0.4444444444444444,
|
| 1001 |
+
"#bd3786"
|
| 1002 |
+
],
|
| 1003 |
+
[
|
| 1004 |
+
0.5555555555555556,
|
| 1005 |
+
"#d8576b"
|
| 1006 |
+
],
|
| 1007 |
+
[
|
| 1008 |
+
0.6666666666666666,
|
| 1009 |
+
"#ed7953"
|
| 1010 |
+
],
|
| 1011 |
+
[
|
| 1012 |
+
0.7777777777777778,
|
| 1013 |
+
"#fb9f3a"
|
| 1014 |
+
],
|
| 1015 |
+
[
|
| 1016 |
+
0.8888888888888888,
|
| 1017 |
+
"#fdca26"
|
| 1018 |
+
],
|
| 1019 |
+
[
|
| 1020 |
+
1.0,
|
| 1021 |
+
"#f0f921"
|
| 1022 |
+
]
|
| 1023 |
+
]
|
| 1024 |
+
}
|
| 1025 |
+
],
|
| 1026 |
+
"mesh3d": [
|
| 1027 |
+
{
|
| 1028 |
+
"type": "mesh3d",
|
| 1029 |
+
"colorbar": {
|
| 1030 |
+
"outlinewidth": 0,
|
| 1031 |
+
"ticks": ""
|
| 1032 |
+
}
|
| 1033 |
+
}
|
| 1034 |
+
],
|
| 1035 |
+
"scatter": [
|
| 1036 |
+
{
|
| 1037 |
+
"marker": {
|
| 1038 |
+
"line": {
|
| 1039 |
+
"color": "#283442"
|
| 1040 |
+
}
|
| 1041 |
+
},
|
| 1042 |
+
"type": "scatter"
|
| 1043 |
+
}
|
| 1044 |
+
],
|
| 1045 |
+
"parcoords": [
|
| 1046 |
+
{
|
| 1047 |
+
"type": "parcoords",
|
| 1048 |
+
"line": {
|
| 1049 |
+
"colorbar": {
|
| 1050 |
+
"outlinewidth": 0,
|
| 1051 |
+
"ticks": ""
|
| 1052 |
+
}
|
| 1053 |
+
}
|
| 1054 |
+
}
|
| 1055 |
+
],
|
| 1056 |
+
"scatterpolargl": [
|
| 1057 |
+
{
|
| 1058 |
+
"type": "scatterpolargl",
|
| 1059 |
+
"marker": {
|
| 1060 |
+
"colorbar": {
|
| 1061 |
+
"outlinewidth": 0,
|
| 1062 |
+
"ticks": ""
|
| 1063 |
+
}
|
| 1064 |
+
}
|
| 1065 |
+
}
|
| 1066 |
+
],
|
| 1067 |
+
"bar": [
|
| 1068 |
+
{
|
| 1069 |
+
"error_x": {
|
| 1070 |
+
"color": "#f2f5fa"
|
| 1071 |
+
},
|
| 1072 |
+
"error_y": {
|
| 1073 |
+
"color": "#f2f5fa"
|
| 1074 |
+
},
|
| 1075 |
+
"marker": {
|
| 1076 |
+
"line": {
|
| 1077 |
+
"color": "rgb(17,17,17)",
|
| 1078 |
+
"width": 0.5
|
| 1079 |
+
},
|
| 1080 |
+
"pattern": {
|
| 1081 |
+
"fillmode": "overlay",
|
| 1082 |
+
"size": 10,
|
| 1083 |
+
"solidity": 0.2
|
| 1084 |
+
}
|
| 1085 |
+
},
|
| 1086 |
+
"type": "bar"
|
| 1087 |
+
}
|
| 1088 |
+
],
|
| 1089 |
+
"scattergeo": [
|
| 1090 |
+
{
|
| 1091 |
+
"type": "scattergeo",
|
| 1092 |
+
"marker": {
|
| 1093 |
+
"colorbar": {
|
| 1094 |
+
"outlinewidth": 0,
|
| 1095 |
+
"ticks": ""
|
| 1096 |
+
}
|
| 1097 |
+
}
|
| 1098 |
+
}
|
| 1099 |
+
],
|
| 1100 |
+
"scatterpolar": [
|
| 1101 |
+
{
|
| 1102 |
+
"type": "scatterpolar",
|
| 1103 |
+
"marker": {
|
| 1104 |
+
"colorbar": {
|
| 1105 |
+
"outlinewidth": 0,
|
| 1106 |
+
"ticks": ""
|
| 1107 |
+
}
|
| 1108 |
+
}
|
| 1109 |
+
}
|
| 1110 |
+
],
|
| 1111 |
+
"histogram": [
|
| 1112 |
+
{
|
| 1113 |
+
"marker": {
|
| 1114 |
+
"pattern": {
|
| 1115 |
+
"fillmode": "overlay",
|
| 1116 |
+
"size": 10,
|
| 1117 |
+
"solidity": 0.2
|
| 1118 |
+
}
|
| 1119 |
+
},
|
| 1120 |
+
"type": "histogram"
|
| 1121 |
+
}
|
| 1122 |
+
],
|
| 1123 |
+
"scattergl": [
|
| 1124 |
+
{
|
| 1125 |
+
"marker": {
|
| 1126 |
+
"line": {
|
| 1127 |
+
"color": "#283442"
|
| 1128 |
+
}
|
| 1129 |
+
},
|
| 1130 |
+
"type": "scattergl"
|
| 1131 |
+
}
|
| 1132 |
+
],
|
| 1133 |
+
"scatter3d": [
|
| 1134 |
+
{
|
| 1135 |
+
"type": "scatter3d",
|
| 1136 |
+
"line": {
|
| 1137 |
+
"colorbar": {
|
| 1138 |
+
"outlinewidth": 0,
|
| 1139 |
+
"ticks": ""
|
| 1140 |
+
}
|
| 1141 |
+
},
|
| 1142 |
+
"marker": {
|
| 1143 |
+
"colorbar": {
|
| 1144 |
+
"outlinewidth": 0,
|
| 1145 |
+
"ticks": ""
|
| 1146 |
+
}
|
| 1147 |
+
}
|
| 1148 |
+
}
|
| 1149 |
+
],
|
| 1150 |
+
"scattermapbox": [
|
| 1151 |
+
{
|
| 1152 |
+
"type": "scattermapbox",
|
| 1153 |
+
"marker": {
|
| 1154 |
+
"colorbar": {
|
| 1155 |
+
"outlinewidth": 0,
|
| 1156 |
+
"ticks": ""
|
| 1157 |
+
}
|
| 1158 |
+
}
|
| 1159 |
+
}
|
| 1160 |
+
],
|
| 1161 |
+
"scatterternary": [
|
| 1162 |
+
{
|
| 1163 |
+
"type": "scatterternary",
|
| 1164 |
+
"marker": {
|
| 1165 |
+
"colorbar": {
|
| 1166 |
+
"outlinewidth": 0,
|
| 1167 |
+
"ticks": ""
|
| 1168 |
+
}
|
| 1169 |
+
}
|
| 1170 |
+
}
|
| 1171 |
+
],
|
| 1172 |
+
"scattercarpet": [
|
| 1173 |
+
{
|
| 1174 |
+
"type": "scattercarpet",
|
| 1175 |
+
"marker": {
|
| 1176 |
+
"colorbar": {
|
| 1177 |
+
"outlinewidth": 0,
|
| 1178 |
+
"ticks": ""
|
| 1179 |
+
}
|
| 1180 |
+
}
|
| 1181 |
+
}
|
| 1182 |
+
],
|
| 1183 |
+
"carpet": [
|
| 1184 |
+
{
|
| 1185 |
+
"aaxis": {
|
| 1186 |
+
"endlinecolor": "#A2B1C6",
|
| 1187 |
+
"gridcolor": "#506784",
|
| 1188 |
+
"linecolor": "#506784",
|
| 1189 |
+
"minorgridcolor": "#506784",
|
| 1190 |
+
"startlinecolor": "#A2B1C6"
|
| 1191 |
+
},
|
| 1192 |
+
"baxis": {
|
| 1193 |
+
"endlinecolor": "#A2B1C6",
|
| 1194 |
+
"gridcolor": "#506784",
|
| 1195 |
+
"linecolor": "#506784",
|
| 1196 |
+
"minorgridcolor": "#506784",
|
| 1197 |
+
"startlinecolor": "#A2B1C6"
|
| 1198 |
+
},
|
| 1199 |
+
"type": "carpet"
|
| 1200 |
+
}
|
| 1201 |
+
],
|
| 1202 |
+
"table": [
|
| 1203 |
+
{
|
| 1204 |
+
"cells": {
|
| 1205 |
+
"fill": {
|
| 1206 |
+
"color": "#506784"
|
| 1207 |
+
},
|
| 1208 |
+
"line": {
|
| 1209 |
+
"color": "rgb(17,17,17)"
|
| 1210 |
+
}
|
| 1211 |
+
},
|
| 1212 |
+
"header": {
|
| 1213 |
+
"fill": {
|
| 1214 |
+
"color": "#2a3f5f"
|
| 1215 |
+
},
|
| 1216 |
+
"line": {
|
| 1217 |
+
"color": "rgb(17,17,17)"
|
| 1218 |
+
}
|
| 1219 |
+
},
|
| 1220 |
+
"type": "table"
|
| 1221 |
+
}
|
| 1222 |
+
],
|
| 1223 |
+
"barpolar": [
|
| 1224 |
+
{
|
| 1225 |
+
"marker": {
|
| 1226 |
+
"line": {
|
| 1227 |
+
"color": "rgb(17,17,17)",
|
| 1228 |
+
"width": 0.5
|
| 1229 |
+
},
|
| 1230 |
+
"pattern": {
|
| 1231 |
+
"fillmode": "overlay",
|
| 1232 |
+
"size": 10,
|
| 1233 |
+
"solidity": 0.2
|
| 1234 |
+
}
|
| 1235 |
+
},
|
| 1236 |
+
"type": "barpolar"
|
| 1237 |
+
}
|
| 1238 |
+
],
|
| 1239 |
+
"pie": [
|
| 1240 |
+
{
|
| 1241 |
+
"automargin": true,
|
| 1242 |
+
"type": "pie"
|
| 1243 |
+
}
|
| 1244 |
+
]
|
| 1245 |
+
},
|
| 1246 |
+
"layout": {
|
| 1247 |
+
"autotypenumbers": "strict",
|
| 1248 |
+
"colorway": [
|
| 1249 |
+
"#636efa",
|
| 1250 |
+
"#EF553B",
|
| 1251 |
+
"#00cc96",
|
| 1252 |
+
"#ab63fa",
|
| 1253 |
+
"#FFA15A",
|
| 1254 |
+
"#19d3f3",
|
| 1255 |
+
"#FF6692",
|
| 1256 |
+
"#B6E880",
|
| 1257 |
+
"#FF97FF",
|
| 1258 |
+
"#FECB52"
|
| 1259 |
+
],
|
| 1260 |
+
"font": {
|
| 1261 |
+
"color": "#f2f5fa"
|
| 1262 |
+
},
|
| 1263 |
+
"hovermode": "closest",
|
| 1264 |
+
"hoverlabel": {
|
| 1265 |
+
"align": "left"
|
| 1266 |
+
},
|
| 1267 |
+
"paper_bgcolor": "rgb(17,17,17)",
|
| 1268 |
+
"plot_bgcolor": "rgb(17,17,17)",
|
| 1269 |
+
"polar": {
|
| 1270 |
+
"bgcolor": "rgb(17,17,17)",
|
| 1271 |
+
"angularaxis": {
|
| 1272 |
+
"gridcolor": "#506784",
|
| 1273 |
+
"linecolor": "#506784",
|
| 1274 |
+
"ticks": ""
|
| 1275 |
+
},
|
| 1276 |
+
"radialaxis": {
|
| 1277 |
+
"gridcolor": "#506784",
|
| 1278 |
+
"linecolor": "#506784",
|
| 1279 |
+
"ticks": ""
|
| 1280 |
+
}
|
| 1281 |
+
},
|
| 1282 |
+
"ternary": {
|
| 1283 |
+
"bgcolor": "rgb(17,17,17)",
|
| 1284 |
+
"aaxis": {
|
| 1285 |
+
"gridcolor": "#506784",
|
| 1286 |
+
"linecolor": "#506784",
|
| 1287 |
+
"ticks": ""
|
| 1288 |
+
},
|
| 1289 |
+
"baxis": {
|
| 1290 |
+
"gridcolor": "#506784",
|
| 1291 |
+
"linecolor": "#506784",
|
| 1292 |
+
"ticks": ""
|
| 1293 |
+
},
|
| 1294 |
+
"caxis": {
|
| 1295 |
+
"gridcolor": "#506784",
|
| 1296 |
+
"linecolor": "#506784",
|
| 1297 |
+
"ticks": ""
|
| 1298 |
+
}
|
| 1299 |
+
},
|
| 1300 |
+
"coloraxis": {
|
| 1301 |
+
"colorbar": {
|
| 1302 |
+
"outlinewidth": 0,
|
| 1303 |
+
"ticks": ""
|
| 1304 |
+
}
|
| 1305 |
+
},
|
| 1306 |
+
"colorscale": {
|
| 1307 |
+
"sequential": [
|
| 1308 |
+
[
|
| 1309 |
+
0.0,
|
| 1310 |
+
"#0d0887"
|
| 1311 |
+
],
|
| 1312 |
+
[
|
| 1313 |
+
0.1111111111111111,
|
| 1314 |
+
"#46039f"
|
| 1315 |
+
],
|
| 1316 |
+
[
|
| 1317 |
+
0.2222222222222222,
|
| 1318 |
+
"#7201a8"
|
| 1319 |
+
],
|
| 1320 |
+
[
|
| 1321 |
+
0.3333333333333333,
|
| 1322 |
+
"#9c179e"
|
| 1323 |
+
],
|
| 1324 |
+
[
|
| 1325 |
+
0.4444444444444444,
|
| 1326 |
+
"#bd3786"
|
| 1327 |
+
],
|
| 1328 |
+
[
|
| 1329 |
+
0.5555555555555556,
|
| 1330 |
+
"#d8576b"
|
| 1331 |
+
],
|
| 1332 |
+
[
|
| 1333 |
+
0.6666666666666666,
|
| 1334 |
+
"#ed7953"
|
| 1335 |
+
],
|
| 1336 |
+
[
|
| 1337 |
+
0.7777777777777778,
|
| 1338 |
+
"#fb9f3a"
|
| 1339 |
+
],
|
| 1340 |
+
[
|
| 1341 |
+
0.8888888888888888,
|
| 1342 |
+
"#fdca26"
|
| 1343 |
+
],
|
| 1344 |
+
[
|
| 1345 |
+
1.0,
|
| 1346 |
+
"#f0f921"
|
| 1347 |
+
]
|
| 1348 |
+
],
|
| 1349 |
+
"sequentialminus": [
|
| 1350 |
+
[
|
| 1351 |
+
0.0,
|
| 1352 |
+
"#0d0887"
|
| 1353 |
+
],
|
| 1354 |
+
[
|
| 1355 |
+
0.1111111111111111,
|
| 1356 |
+
"#46039f"
|
| 1357 |
+
],
|
| 1358 |
+
[
|
| 1359 |
+
0.2222222222222222,
|
| 1360 |
+
"#7201a8"
|
| 1361 |
+
],
|
| 1362 |
+
[
|
| 1363 |
+
0.3333333333333333,
|
| 1364 |
+
"#9c179e"
|
| 1365 |
+
],
|
| 1366 |
+
[
|
| 1367 |
+
0.4444444444444444,
|
| 1368 |
+
"#bd3786"
|
| 1369 |
+
],
|
| 1370 |
+
[
|
| 1371 |
+
0.5555555555555556,
|
| 1372 |
+
"#d8576b"
|
| 1373 |
+
],
|
| 1374 |
+
[
|
| 1375 |
+
0.6666666666666666,
|
| 1376 |
+
"#ed7953"
|
| 1377 |
+
],
|
| 1378 |
+
[
|
| 1379 |
+
0.7777777777777778,
|
| 1380 |
+
"#fb9f3a"
|
| 1381 |
+
],
|
| 1382 |
+
[
|
| 1383 |
+
0.8888888888888888,
|
| 1384 |
+
"#fdca26"
|
| 1385 |
+
],
|
| 1386 |
+
[
|
| 1387 |
+
1.0,
|
| 1388 |
+
"#f0f921"
|
| 1389 |
+
]
|
| 1390 |
+
],
|
| 1391 |
+
"diverging": [
|
| 1392 |
+
[
|
| 1393 |
+
0,
|
| 1394 |
+
"#8e0152"
|
| 1395 |
+
],
|
| 1396 |
+
[
|
| 1397 |
+
0.1,
|
| 1398 |
+
"#c51b7d"
|
| 1399 |
+
],
|
| 1400 |
+
[
|
| 1401 |
+
0.2,
|
| 1402 |
+
"#de77ae"
|
| 1403 |
+
],
|
| 1404 |
+
[
|
| 1405 |
+
0.3,
|
| 1406 |
+
"#f1b6da"
|
| 1407 |
+
],
|
| 1408 |
+
[
|
| 1409 |
+
0.4,
|
| 1410 |
+
"#fde0ef"
|
| 1411 |
+
],
|
| 1412 |
+
[
|
| 1413 |
+
0.5,
|
| 1414 |
+
"#f7f7f7"
|
| 1415 |
+
],
|
| 1416 |
+
[
|
| 1417 |
+
0.6,
|
| 1418 |
+
"#e6f5d0"
|
| 1419 |
+
],
|
| 1420 |
+
[
|
| 1421 |
+
0.7,
|
| 1422 |
+
"#b8e186"
|
| 1423 |
+
],
|
| 1424 |
+
[
|
| 1425 |
+
0.8,
|
| 1426 |
+
"#7fbc41"
|
| 1427 |
+
],
|
| 1428 |
+
[
|
| 1429 |
+
0.9,
|
| 1430 |
+
"#4d9221"
|
| 1431 |
+
],
|
| 1432 |
+
[
|
| 1433 |
+
1,
|
| 1434 |
+
"#276419"
|
| 1435 |
+
]
|
| 1436 |
+
]
|
| 1437 |
+
},
|
| 1438 |
+
"xaxis": {
|
| 1439 |
+
"gridcolor": "#283442",
|
| 1440 |
+
"linecolor": "#506784",
|
| 1441 |
+
"ticks": "",
|
| 1442 |
+
"title": {
|
| 1443 |
+
"standoff": 15
|
| 1444 |
+
},
|
| 1445 |
+
"zerolinecolor": "#283442",
|
| 1446 |
+
"automargin": true,
|
| 1447 |
+
"zerolinewidth": 2
|
| 1448 |
+
},
|
| 1449 |
+
"yaxis": {
|
| 1450 |
+
"gridcolor": "#283442",
|
| 1451 |
+
"linecolor": "#506784",
|
| 1452 |
+
"ticks": "",
|
| 1453 |
+
"title": {
|
| 1454 |
+
"standoff": 15
|
| 1455 |
+
},
|
| 1456 |
+
"zerolinecolor": "#283442",
|
| 1457 |
+
"automargin": true,
|
| 1458 |
+
"zerolinewidth": 2
|
| 1459 |
+
},
|
| 1460 |
+
"scene": {
|
| 1461 |
+
"xaxis": {
|
| 1462 |
+
"backgroundcolor": "rgb(17,17,17)",
|
| 1463 |
+
"gridcolor": "#506784",
|
| 1464 |
+
"linecolor": "#506784",
|
| 1465 |
+
"showbackground": true,
|
| 1466 |
+
"ticks": "",
|
| 1467 |
+
"zerolinecolor": "#C8D4E3",
|
| 1468 |
+
"gridwidth": 2
|
| 1469 |
+
},
|
| 1470 |
+
"yaxis": {
|
| 1471 |
+
"backgroundcolor": "rgb(17,17,17)",
|
| 1472 |
+
"gridcolor": "#506784",
|
| 1473 |
+
"linecolor": "#506784",
|
| 1474 |
+
"showbackground": true,
|
| 1475 |
+
"ticks": "",
|
| 1476 |
+
"zerolinecolor": "#C8D4E3",
|
| 1477 |
+
"gridwidth": 2
|
| 1478 |
+
},
|
| 1479 |
+
"zaxis": {
|
| 1480 |
+
"backgroundcolor": "rgb(17,17,17)",
|
| 1481 |
+
"gridcolor": "#506784",
|
| 1482 |
+
"linecolor": "#506784",
|
| 1483 |
+
"showbackground": true,
|
| 1484 |
+
"ticks": "",
|
| 1485 |
+
"zerolinecolor": "#C8D4E3",
|
| 1486 |
+
"gridwidth": 2
|
| 1487 |
+
}
|
| 1488 |
+
},
|
| 1489 |
+
"shapedefaults": {
|
| 1490 |
+
"line": {
|
| 1491 |
+
"color": "#f2f5fa"
|
| 1492 |
+
}
|
| 1493 |
+
},
|
| 1494 |
+
"annotationdefaults": {
|
| 1495 |
+
"arrowcolor": "#f2f5fa",
|
| 1496 |
+
"arrowhead": 0,
|
| 1497 |
+
"arrowwidth": 1
|
| 1498 |
+
},
|
| 1499 |
+
"geo": {
|
| 1500 |
+
"bgcolor": "rgb(17,17,17)",
|
| 1501 |
+
"landcolor": "rgb(17,17,17)",
|
| 1502 |
+
"subunitcolor": "#506784",
|
| 1503 |
+
"showland": true,
|
| 1504 |
+
"showlakes": true,
|
| 1505 |
+
"lakecolor": "rgb(17,17,17)"
|
| 1506 |
+
},
|
| 1507 |
+
"title": {
|
| 1508 |
+
"x": 0.05
|
| 1509 |
+
},
|
| 1510 |
+
"updatemenudefaults": {
|
| 1511 |
+
"bgcolor": "#506784",
|
| 1512 |
+
"borderwidth": 0
|
| 1513 |
+
},
|
| 1514 |
+
"sliderdefaults": {
|
| 1515 |
+
"bgcolor": "#C8D4E3",
|
| 1516 |
+
"borderwidth": 1,
|
| 1517 |
+
"bordercolor": "rgb(17,17,17)",
|
| 1518 |
+
"tickwidth": 0
|
| 1519 |
+
},
|
| 1520 |
+
"mapbox": {
|
| 1521 |
+
"style": "dark"
|
| 1522 |
+
}
|
| 1523 |
+
}
|
| 1524 |
+
},
|
| 1525 |
+
"xaxis": {
|
| 1526 |
+
"anchor": "y",
|
| 1527 |
+
"domain": [
|
| 1528 |
+
0.0,
|
| 1529 |
+
1.0
|
| 1530 |
+
],
|
| 1531 |
+
"title": {
|
| 1532 |
+
"text": "value"
|
| 1533 |
+
}
|
| 1534 |
+
},
|
| 1535 |
+
"yaxis": {
|
| 1536 |
+
"anchor": "x",
|
| 1537 |
+
"domain": [
|
| 1538 |
+
0.0,
|
| 1539 |
+
1.0
|
| 1540 |
+
],
|
| 1541 |
+
"title": {
|
| 1542 |
+
"text": "count"
|
| 1543 |
+
}
|
| 1544 |
+
},
|
| 1545 |
+
"legend": {
|
| 1546 |
+
"title": {
|
| 1547 |
+
"text": "variable"
|
| 1548 |
+
},
|
| 1549 |
+
"tracegroupgap": 0
|
| 1550 |
+
},
|
| 1551 |
+
"margin": {
|
| 1552 |
+
"t": 60
|
| 1553 |
+
},
|
| 1554 |
+
"barmode": "relative"
|
| 1555 |
+
},
|
| 1556 |
+
"config": {
|
| 1557 |
+
"plotlyServerURL": "https://plot.ly"
|
| 1558 |
+
}
|
| 1559 |
+
},
|
| 1560 |
+
"text/html": [
|
| 1561 |
+
"<div> <div id=\"123c5b41-465a-466f-8bd4-1be7a1927f18\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"123c5b41-465a-466f-8bd4-1be7a1927f18\")) { Plotly.newPlot( \"123c5b41-465a-466f-8bd4-1be7a1927f18\", [{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"variable=0\\u003cbr\\u003evalue=%{x}\\u003cbr\\u003ecount=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"0\",\"marker\":{\"color\":\"#636efa\",\"pattern\":{\"shape\":\"\"}},\"name\":\"0\",\"offsetgroup\":\"0\",\"orientation\":\"v\",\"showlegend\":true,\"x\":[15.0,25.0,51.0,84.0,88.0,100.0,85.0,60.0,49.0,47.0,36.0,37.0,72.0,88.0,81.0,74.0,50.0,66.0,59.0,38.0,57.0,67.0,38.0,68.0,54.0,68.0,62.0,74.0,66.0,53.0,85.0,76.0,92.0,59.0,73.0,52.0,46.0,51.0,42.0,81.0,49.0,42.0,77.0,90.0,60.0,93.0,70.0,77.0,70.0,59.0,74.0,66.0,71.0,51.0,43.0,44.0,39.0,22.0,30.0,44.0,44.0,34.0,59.0,36.0,52.0,60.0,57.0,45.0,62.0,55.0,75.0,43.0,22.0,37.0,41.0,40.0,60.0,50.0,57.0,74.0,53.0,84.0,120.0,78.0,76.0,67.0,72.0,68.0,101.0,78.0,87.0,99.0,85.0,47.0,48.0,30.0,76.0,65.0,63.0,49.0,45.0,70.0,79.0,76.0,74.0,71.0,66.0,69.0,97.0,81.0,65.0,69.0,83.0,84.0,65.0,58.0,77.0,63.0,66.0,64.0,64.0,72.0,66.0,90.0,75.0,59.0,75.0,27.0,47.0,45.0,55.0,54.0,76.0,66.0,90.0,98.0,66.0,77.0,71.0,79.0,80.0,60.0,63.0,91.0,82.0,65.0,59.0,70.0,63.0,73.0,72.0,63.0,87.0,81.0,78.0,86.0,61.0,59.0,98.0,84.0,65.0,63.0,51.0,63.0,61.0,72.0,78.0,85.0,79.0,75.0,86.0,51.0,37.0,48.0,51.0,49.0,54.0,58.0,67.0,41.0,49.0,68.0,68.0,88.0,40.0,42.0,49.0,90.0,49.0,65.0,87.0,77.0,39.0,75.0,54.0,70.0,57.0,43.0,96.0,51.0,45.0,61.0,63.0,61.0,90.0,52.0,89.0,60.0,77.0,62.0,71.0,62.0,74.0,105.0,89.0,118.0,71.0,67.0,45.0,53.0,58.0,82.0,76.0,45.0,53.0,43.0,71.0,86.0,71.0,51.0,48.0,51.0,84.0,79.0,87.0,78.0,68.0,94.0,74.0,64.0,68.0,38.0,53.0,57.0,57.0,78.0,68.0,39.0,44.0,49.0,57.0,65.0,62.0,60.0,30.0,49.0,59.0,66.0,71.0,55.0,66.0,66.0,63.0,52.0,84.0,76.0,90.0,73.0,71.0,85.0,77.0,82.0,72.0,68.0,58.0,46.0,49.0,57.0,75.0,46.0,64.0,53.0,55.0,67.0,79.0,88.0,72.0,58.0,28.0,39.0,44.0,47.0,92.0,98.0,72.0,83.0,25.0,37.0,82.0,75.0,55.0,69.0,80.0,82.0,71.0,64.0,50.0,96.0,71.0,71.0,74.0,75.0,82.0,86.0,79.0,85.0,83.0,72.0,68.0,55.0,40.0,49.0,76.0,82.0,83.0,78.0,70.0,108.0,81.0,54.0,22.0,40.0,41.0,59.0,42.0,48.0,68.0,70.0,95.0,120.0,75.0,52.0,32.0,33.0,21.0,69.0,57.0,52.0,55.0,48.0,47.0,91.0,60.0,68.0,54.0,62.0,65.0,75.0,74.0,73.0,71.0,87.0,61.0,57.0,75.0,83.0,73.0,104.0,86.0,112.0,82.0,74.0,72.0,53.0,54.0,27.0,35.0,61.0,65.0,70.0,70.0,6.0,26.0,21.0,42.0,71.0,87.0,32.0,45.0,88.0,65.0,74.0,62.0,68.0,65.0,55.0,40.0,38.0,28.0,34.0,34.0,42.0,47.0,78.0,47.0,72.0,78.0,61.0,79.0,106.0,75.0,95.0,68.0,70.0,49.0,54.0,69.0,73.0,85.0,69.0,71.0,56.0,64.0,77.0,84.0,79.0,90.0,86.0,79.0,34.0,27.0,29.0,37.0,46.0,55.0,53.0,48.0,48.0,58.0,58.0,52.0,61.0,58.0,42.0,75.0,83.0,60.0,63.0,39.0,33.0,52.0,46.0,55.0,29.0,34.0,51.0,54.0,64.0,90.0,63.0,59.0,91.0,62.0,77.0,87.0,74.0,39.0,44.0,32.0,84.0,53.0,32.0,41.0,46.0,45.0,48.0,68.0,78.0,41.0,45.0,54.0,72.0,61.0,70.0,62.0,54.0,71.0,80.0,92.0,89.0,73.0,99.0,85.0,83.0,92.0,79.0,67.0,68.0,78.0,90.0,72.0,80.0,95.0,78.0,75.0,48.0,47.0,61.0],\"xaxis\":\"x\",\"yaxis\":\"y\",\"type\":\"histogram\"}], {\"template\":{\"data\":{\"histogram2dcontour\":[{\"type\":\"histogram2dcontour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"choropleth\":[{\"type\":\"choropleth\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"histogram2d\":[{\"type\":\"histogram2d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmap\":[{\"type\":\"heatmap\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmapgl\":[{\"type\":\"heatmapgl\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"contourcarpet\":[{\"type\":\"contourcarpet\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"contour\":[{\"type\":\"contour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"surface\":[{\"type\":\"surface\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"mesh3d\":[{\"type\":\"mesh3d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"scatter\":[{\"marker\":{\"line\":{\"color\":\"#283442\"}},\"type\":\"scatter\"}],\"parcoords\":[{\"type\":\"parcoords\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolargl\":[{\"type\":\"scatterpolargl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"bar\":[{\"error_x\":{\"color\":\"#f2f5fa\"},\"error_y\":{\"color\":\"#f2f5fa\"},\"marker\":{\"line\":{\"color\":\"rgb(17,17,17)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"scattergeo\":[{\"type\":\"scattergeo\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolar\":[{\"type\":\"scatterpolar\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"scattergl\":[{\"marker\":{\"line\":{\"color\":\"#283442\"}},\"type\":\"scattergl\"}],\"scatter3d\":[{\"type\":\"scatter3d\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattermapbox\":[{\"type\":\"scattermapbox\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterternary\":[{\"type\":\"scatterternary\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattercarpet\":[{\"type\":\"scattercarpet\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#A2B1C6\",\"gridcolor\":\"#506784\",\"linecolor\":\"#506784\",\"minorgridcolor\":\"#506784\",\"startlinecolor\":\"#A2B1C6\"},\"baxis\":{\"endlinecolor\":\"#A2B1C6\",\"gridcolor\":\"#506784\",\"linecolor\":\"#506784\",\"minorgridcolor\":\"#506784\",\"startlinecolor\":\"#A2B1C6\"},\"type\":\"carpet\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#506784\"},\"line\":{\"color\":\"rgb(17,17,17)\"}},\"header\":{\"fill\":{\"color\":\"#2a3f5f\"},\"line\":{\"color\":\"rgb(17,17,17)\"}},\"type\":\"table\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"rgb(17,17,17)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}]},\"layout\":{\"autotypenumbers\":\"strict\",\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#f2f5fa\"},\"hovermode\":\"closest\",\"hoverlabel\":{\"align\":\"left\"},\"paper_bgcolor\":\"rgb(17,17,17)\",\"plot_bgcolor\":\"rgb(17,17,17)\",\"polar\":{\"bgcolor\":\"rgb(17,17,17)\",\"angularaxis\":{\"gridcolor\":\"#506784\",\"linecolor\":\"#506784\",\"ticks\":\"\"},\"radialaxis\":{\"gridcolor\":\"#506784\",\"linecolor\":\"#506784\",\"ticks\":\"\"}},\"ternary\":{\"bgcolor\":\"rgb(17,17,17)\",\"aaxis\":{\"gridcolor\":\"#506784\",\"linecolor\":\"#506784\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"#506784\",\"linecolor\":\"#506784\",\"ticks\":\"\"},\"caxis\":{\"gridcolor\":\"#506784\",\"linecolor\":\"#506784\",\"ticks\":\"\"}},\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]]},\"xaxis\":{\"gridcolor\":\"#283442\",\"linecolor\":\"#506784\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"#283442\",\"automargin\":true,\"zerolinewidth\":2},\"yaxis\":{\"gridcolor\":\"#283442\",\"linecolor\":\"#506784\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"#283442\",\"automargin\":true,\"zerolinewidth\":2},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"rgb(17,17,17)\",\"gridcolor\":\"#506784\",\"linecolor\":\"#506784\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"#C8D4E3\",\"gridwidth\":2},\"yaxis\":{\"backgroundcolor\":\"rgb(17,17,17)\",\"gridcolor\":\"#506784\",\"linecolor\":\"#506784\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"#C8D4E3\",\"gridwidth\":2},\"zaxis\":{\"backgroundcolor\":\"rgb(17,17,17)\",\"gridcolor\":\"#506784\",\"linecolor\":\"#506784\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"#C8D4E3\",\"gridwidth\":2}},\"shapedefaults\":{\"line\":{\"color\":\"#f2f5fa\"}},\"annotationdefaults\":{\"arrowcolor\":\"#f2f5fa\",\"arrowhead\":0,\"arrowwidth\":1},\"geo\":{\"bgcolor\":\"rgb(17,17,17)\",\"landcolor\":\"rgb(17,17,17)\",\"subunitcolor\":\"#506784\",\"showland\":true,\"showlakes\":true,\"lakecolor\":\"rgb(17,17,17)\"},\"title\":{\"x\":0.05},\"updatemenudefaults\":{\"bgcolor\":\"#506784\",\"borderwidth\":0},\"sliderdefaults\":{\"bgcolor\":\"#C8D4E3\",\"borderwidth\":1,\"bordercolor\":\"rgb(17,17,17)\",\"tickwidth\":0},\"mapbox\":{\"style\":\"dark\"}}},\"xaxis\":{\"anchor\":\"y\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"value\"}},\"yaxis\":{\"anchor\":\"x\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"count\"}},\"legend\":{\"title\":{\"text\":\"variable\"},\"tracegroupgap\":0},\"margin\":{\"t\":60},\"barmode\":\"relative\"}, {\"responsive\": true} ).then(function(){\n",
|
| 1562 |
+
" \n",
|
| 1563 |
+
"var gd = document.getElementById('123c5b41-465a-466f-8bd4-1be7a1927f18');\n",
|
| 1564 |
+
"var x = new MutationObserver(function (mutations, observer) {{\n",
|
| 1565 |
+
" var display = window.getComputedStyle(gd).display;\n",
|
| 1566 |
+
" if (!display || display === 'none') {{\n",
|
| 1567 |
+
" console.log([gd, 'removed!']);\n",
|
| 1568 |
+
" Plotly.purge(gd);\n",
|
| 1569 |
+
" observer.disconnect();\n",
|
| 1570 |
+
" }}\n",
|
| 1571 |
+
"}});\n",
|
| 1572 |
+
"\n",
|
| 1573 |
+
"// Listen for the removal of the full notebook cells\n",
|
| 1574 |
+
"var notebookContainer = gd.closest('#notebook-container');\n",
|
| 1575 |
+
"if (notebookContainer) {{\n",
|
| 1576 |
+
" x.observe(notebookContainer, {childList: true});\n",
|
| 1577 |
+
"}}\n",
|
| 1578 |
+
"\n",
|
| 1579 |
+
"// Listen for the clearing of the current output cell\n",
|
| 1580 |
+
"var outputEl = gd.closest('.output');\n",
|
| 1581 |
+
"if (outputEl) {{\n",
|
| 1582 |
+
" x.observe(outputEl, {childList: true});\n",
|
| 1583 |
+
"}}\n",
|
| 1584 |
+
"\n",
|
| 1585 |
+
" }) }; }); </script> </div>"
|
| 1586 |
+
]
|
| 1587 |
+
},
|
| 1588 |
+
"metadata": {},
|
| 1589 |
+
"output_type": "display_data"
|
| 1590 |
+
}
|
| 1591 |
+
],
|
| 1592 |
+
"execution_count": 6
|
| 1593 |
+
},
|
| 1594 |
+
{
|
| 1595 |
+
"metadata": {
|
| 1596 |
+
"ExecuteTime": {
|
| 1597 |
+
"end_time": "2024-11-17T01:39:16.853090Z",
|
| 1598 |
+
"start_time": "2024-11-17T01:39:16.170397Z"
|
| 1599 |
+
}
|
| 1600 |
+
},
|
| 1601 |
+
"cell_type": "code",
|
| 1602 |
+
"source": [
|
| 1603 |
+
"from transformer_lens import utils\n",
|
| 1604 |
+
"from functools import partial\n",
|
| 1605 |
+
"\n",
|
| 1606 |
+
"\n",
|
| 1607 |
+
"# next we want to do a reconstruction test.\n",
|
| 1608 |
+
"def reconstr_hook(activation, hook, sae_out):\n",
|
| 1609 |
+
" return sae_out\n",
|
| 1610 |
+
"\n",
|
| 1611 |
+
"\n",
|
| 1612 |
+
"def zero_abl_hook(activation, hook):\n",
|
| 1613 |
+
" return torch.zeros_like(activation)\n",
|
| 1614 |
+
"\n",
|
| 1615 |
+
"\n",
|
| 1616 |
+
"print(\"Orig\", model(batch_tokens, return_type=\"loss\").item())\n",
|
| 1617 |
+
"print(\n",
|
| 1618 |
+
" \"reconstr\",\n",
|
| 1619 |
+
" model.run_with_hooks(\n",
|
| 1620 |
+
" batch_tokens,\n",
|
| 1621 |
+
" fwd_hooks=[\n",
|
| 1622 |
+
" (\n",
|
| 1623 |
+
" sae.cfg.hook_name,\n",
|
| 1624 |
+
" partial(reconstr_hook, sae_out=sae_out),\n",
|
| 1625 |
+
" )\n",
|
| 1626 |
+
" ],\n",
|
| 1627 |
+
" return_type=\"loss\",\n",
|
| 1628 |
+
" ).item(),\n",
|
| 1629 |
+
")\n",
|
| 1630 |
+
"print(\n",
|
| 1631 |
+
" \"Zero\",\n",
|
| 1632 |
+
" model.run_with_hooks(\n",
|
| 1633 |
+
" batch_tokens,\n",
|
| 1634 |
+
" return_type=\"loss\",\n",
|
| 1635 |
+
" fwd_hooks=[(sae.cfg.hook_name, zero_abl_hook)],\n",
|
| 1636 |
+
" ).item(),\n",
|
| 1637 |
+
")"
|
| 1638 |
+
],
|
| 1639 |
+
"id": "ddabe8530685c45",
|
| 1640 |
+
"outputs": [
|
| 1641 |
+
{
|
| 1642 |
+
"name": "stdout",
|
| 1643 |
+
"output_type": "stream",
|
| 1644 |
+
"text": [
|
| 1645 |
+
"Orig 3.5622000694274902\n",
|
| 1646 |
+
"reconstr 3.764155387878418\n",
|
| 1647 |
+
"Zero 11.146590232849121\n"
|
| 1648 |
+
]
|
| 1649 |
+
}
|
| 1650 |
+
],
|
| 1651 |
+
"execution_count": 5
|
| 1652 |
+
},
|
| 1653 |
+
{
|
| 1654 |
+
"metadata": {
|
| 1655 |
+
"ExecuteTime": {
|
| 1656 |
+
"end_time": "2024-11-17T01:39:48.048784Z",
|
| 1657 |
+
"start_time": "2024-11-17T01:39:48.033476Z"
|
| 1658 |
+
}
|
| 1659 |
+
},
|
| 1660 |
+
"cell_type": "code",
|
| 1661 |
+
"source": "cfg_dict",
|
| 1662 |
+
"id": "f08540e9e717e9fe",
|
| 1663 |
+
"outputs": [
|
| 1664 |
+
{
|
| 1665 |
+
"data": {
|
| 1666 |
+
"text/plain": [
|
| 1667 |
+
"{'model_name': 'gpt2-small',\n",
|
| 1668 |
+
" 'hook_point': 'blocks.8.hook_resid_pre',\n",
|
| 1669 |
+
" 'hook_point_layer': 8,\n",
|
| 1670 |
+
" 'hook_point_head_index': None,\n",
|
| 1671 |
+
" 'dataset_path': 'Skylion007/openwebtext',\n",
|
| 1672 |
+
" 'is_dataset_tokenized': False,\n",
|
| 1673 |
+
" 'context_size': 128,\n",
|
| 1674 |
+
" 'use_cached_activations': False,\n",
|
| 1675 |
+
" 'cached_activations_path': 'activations/Skylion007_openwebtext/gpt2-small/blocks.8.hook_resid_pre',\n",
|
| 1676 |
+
" 'd_in': 768,\n",
|
| 1677 |
+
" 'n_batches_in_buffer': 128,\n",
|
| 1678 |
+
" 'total_training_tokens': 300000000,\n",
|
| 1679 |
+
" 'store_batch_size': 32,\n",
|
| 1680 |
+
" 'device': 'cuda',\n",
|
| 1681 |
+
" 'seed': 42,\n",
|
| 1682 |
+
" 'dtype': 'torch.float32',\n",
|
| 1683 |
+
" 'b_dec_init_method': 'geometric_median',\n",
|
| 1684 |
+
" 'expansion_factor': 32,\n",
|
| 1685 |
+
" 'from_pretrained_path': None,\n",
|
| 1686 |
+
" 'l1_coefficient': 8e-05,\n",
|
| 1687 |
+
" 'lr': 0.0004,\n",
|
| 1688 |
+
" 'lr_scheduler_name': None,\n",
|
| 1689 |
+
" 'lr_warm_up_steps': 5000,\n",
|
| 1690 |
+
" 'train_batch_size': 4096,\n",
|
| 1691 |
+
" 'use_ghost_grads': False,\n",
|
| 1692 |
+
" 'feature_sampling_window': 1000,\n",
|
| 1693 |
+
" 'feature_sampling_method': None,\n",
|
| 1694 |
+
" 'resample_batches': 1028,\n",
|
| 1695 |
+
" 'feature_reinit_scale': 0.2,\n",
|
| 1696 |
+
" 'dead_feature_window': 5000,\n",
|
| 1697 |
+
" 'dead_feature_estimation_method': 'no_fire',\n",
|
| 1698 |
+
" 'dead_feature_threshold': 1e-08,\n",
|
| 1699 |
+
" 'log_to_wandb': True,\n",
|
| 1700 |
+
" 'wandb_project': 'mats_sae_training_gpt2_small_resid_pre_5',\n",
|
| 1701 |
+
" 'wandb_entity': None,\n",
|
| 1702 |
+
" 'wandb_log_frequency': 100,\n",
|
| 1703 |
+
" 'n_checkpoints': 10,\n",
|
| 1704 |
+
" 'checkpoint_path': 'checkpoints/ut7lhl4q',\n",
|
| 1705 |
+
" 'd_sae': 24576,\n",
|
| 1706 |
+
" 'tokens_per_buffer': 67108864,\n",
|
| 1707 |
+
" 'run_name': '24576-L1-8e-05-LR-0.0004-Tokens-3.000e+08',\n",
|
| 1708 |
+
" 'model_from_pretrained_kwargs': {'center_writing_weights': True},\n",
|
| 1709 |
+
" 'neuronpedia_id': 'gpt2-small/8-res-jb',\n",
|
| 1710 |
+
" 'prepend_bos': True,\n",
|
| 1711 |
+
" 'dataset_trust_remote_code': True,\n",
|
| 1712 |
+
" 'apply_b_dec_to_input': True,\n",
|
| 1713 |
+
" 'finetuning_scaling_factor': False,\n",
|
| 1714 |
+
" 'sae_lens_training_version': None,\n",
|
| 1715 |
+
" 'activation_fn_str': 'relu',\n",
|
| 1716 |
+
" 'architecture': 'standard',\n",
|
| 1717 |
+
" 'normalize_activations': 'none'}"
|
| 1718 |
+
]
|
| 1719 |
+
},
|
| 1720 |
+
"execution_count": 7,
|
| 1721 |
+
"metadata": {},
|
| 1722 |
+
"output_type": "execute_result"
|
| 1723 |
+
}
|
| 1724 |
+
],
|
| 1725 |
+
"execution_count": 7
|
| 1726 |
+
},
|
| 1727 |
+
{
|
| 1728 |
+
"metadata": {
|
| 1729 |
+
"ExecuteTime": {
|
| 1730 |
+
"end_time": "2024-11-17T01:43:04.413424Z",
|
| 1731 |
+
"start_time": "2024-11-17T01:43:04.407561Z"
|
| 1732 |
+
}
|
| 1733 |
+
},
|
| 1734 |
+
"cell_type": "code",
|
| 1735 |
+
"source": "sae.W_dec.shape",
|
| 1736 |
+
"id": "5e92bb48ae9ab956",
|
| 1737 |
+
"outputs": [
|
| 1738 |
+
{
|
| 1739 |
+
"data": {
|
| 1740 |
+
"text/plain": [
|
| 1741 |
+
"torch.Size([24576, 768])"
|
| 1742 |
+
]
|
| 1743 |
+
},
|
| 1744 |
+
"execution_count": 13,
|
| 1745 |
+
"metadata": {},
|
| 1746 |
+
"output_type": "execute_result"
|
| 1747 |
+
}
|
| 1748 |
+
],
|
| 1749 |
+
"execution_count": 13
|
| 1750 |
+
},
|
| 1751 |
+
{
|
| 1752 |
+
"metadata": {},
|
| 1753 |
+
"cell_type": "code",
|
| 1754 |
+
"outputs": [],
|
| 1755 |
+
"execution_count": null,
|
| 1756 |
+
"source": "",
|
| 1757 |
+
"id": "ab4398bacf9ee3bc"
|
| 1758 |
+
}
|
| 1759 |
+
],
|
| 1760 |
+
"metadata": {
|
| 1761 |
+
"kernelspec": {
|
| 1762 |
+
"display_name": "Python 3",
|
| 1763 |
+
"language": "python",
|
| 1764 |
+
"name": "python3"
|
| 1765 |
+
},
|
| 1766 |
+
"language_info": {
|
| 1767 |
+
"codemirror_mode": {
|
| 1768 |
+
"name": "ipython",
|
| 1769 |
+
"version": 2
|
| 1770 |
+
},
|
| 1771 |
+
"file_extension": ".py",
|
| 1772 |
+
"mimetype": "text/x-python",
|
| 1773 |
+
"name": "python",
|
| 1774 |
+
"nbconvert_exporter": "python",
|
| 1775 |
+
"pygments_lexer": "ipython2",
|
| 1776 |
+
"version": "2.7.6"
|
| 1777 |
+
}
|
| 1778 |
+
},
|
| 1779 |
+
"nbformat": 4,
|
| 1780 |
+
"nbformat_minor": 5
|
| 1781 |
+
}
|
nnsight_gemma_steering_file.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from functools import partial
|
| 2 |
+
from contextlib import contextmanager
|
| 3 |
+
|
| 4 |
+
from nnsight import LanguageModel
|
| 5 |
+
import torch
|
| 6 |
+
#from transformer_lens import HookedTransformer, utils
|
| 7 |
+
|
| 8 |
+
from sae_lens import SAE
|
| 9 |
+
|
| 10 |
+
device = "cuda"
|
| 11 |
+
|
| 12 |
+
sae_20, _, _ = SAE.from_pretrained(
|
| 13 |
+
release = "gemma-scope-2b-pt-res-canonical",
|
| 14 |
+
sae_id = "layer_20/width_16k/canonical",
|
| 15 |
+
device=device
|
| 16 |
+
)
|
| 17 |
+
sae_10, _, _ = SAE.from_pretrained(
|
| 18 |
+
release = "gemma-scope-2b-pt-res-canonical",
|
| 19 |
+
sae_id = "layer_10/width_16k/canonical",
|
| 20 |
+
device=device
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
sae_4, _, _ = SAE.from_pretrained(
|
| 24 |
+
release = "gemma-scope-2b-pt-res-canonical",
|
| 25 |
+
sae_id = "layer_4/width_16k/canonical",
|
| 26 |
+
device=device
|
| 27 |
+
)
|
| 28 |
+
sae_25, _, _ = SAE.from_pretrained(
|
| 29 |
+
release = "gemma-scope-2b-pt-res-canonical",
|
| 30 |
+
sae_id = "layer_25/width_16k/canonical",
|
| 31 |
+
device=device
|
| 32 |
+
)
|
| 33 |
+
feature_dict = {
|
| 34 |
+
"dog": {
|
| 35 |
+
"sae": sae_20,
|
| 36 |
+
"index": 12082
|
| 37 |
+
},
|
| 38 |
+
"harry potter4": {
|
| 39 |
+
"sae": sae_4,
|
| 40 |
+
"index": 12445
|
| 41 |
+
},
|
| 42 |
+
"harry potter10": {
|
| 43 |
+
"sae": sae_10,
|
| 44 |
+
"index": 6520
|
| 45 |
+
},
|
| 46 |
+
"kindness": {
|
| 47 |
+
"sae": sae_25,
|
| 48 |
+
"index": 10092
|
| 49 |
+
},
|
| 50 |
+
"yelling": {
|
| 51 |
+
"sae": sae_20,
|
| 52 |
+
"index": 11859
|
| 53 |
+
}
|
| 54 |
+
}
|
| 55 |
+
llm = LanguageModel(
|
| 56 |
+
"google/gemma-2-2b-it",
|
| 57 |
+
# dtype=torch.bfloat16,
|
| 58 |
+
# default_padding_side="left",
|
| 59 |
+
device_map="cuda:0",
|
| 60 |
+
)
|
| 61 |
+
# "meta-llama/Llama-3.2-1B-Instruct",#
|
| 62 |
+
|
| 63 |
+
batched_chat = [
|
| 64 |
+
[
|
| 65 |
+
{"role": "user",
|
| 66 |
+
"content": "What book is Hermione Granger from?"}
|
| 67 |
+
]
|
| 68 |
+
]
|
| 69 |
+
|
| 70 |
+
tokens = llm.tokenizer.apply_chat_template(batched_chat,
|
| 71 |
+
padding=True,
|
| 72 |
+
tokenize=True,
|
| 73 |
+
return_tensors="pt",
|
| 74 |
+
add_generation_prompt=True
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
feature = feature_dict["harry potter4"]
|
| 79 |
+
strength = -5
|
| 80 |
+
steering_vector = feature["sae"].W_dec[feature["index"]] * strength
|
| 81 |
+
|
| 82 |
+
with llm.generate(tokens, temperature=1, max_new_tokens=128) as tracer:
|
| 83 |
+
for i in range(len(llm.model.layers)):
|
| 84 |
+
module_name = "post_attention_layernorm"
|
| 85 |
+
module = getattr(llm.model.layers[i], module_name)
|
| 86 |
+
|
| 87 |
+
resid_pre_before = module.output.clone().save()
|
| 88 |
+
module.output[:] = resid_pre_before + steering_vector
|
| 89 |
+
|
| 90 |
+
resid_pre_after = module.output.save()
|
| 91 |
+
|
| 92 |
+
# module.next()
|
| 93 |
+
|
| 94 |
+
output = llm.generator.output.save()
|
| 95 |
+
|
| 96 |
+
# print("output tensors:", output)
|
| 97 |
+
print("output string:", llm.tokenizer.batch_decode(output.tolist(), skip_special_tokens=False)[0])
|
| 98 |
+
# print("Before:", resid_pre_before)
|
| 99 |
+
# print("After:", resid_pre_after)
|
tlens_gemma_steering.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
from prometheus_client.decorator import contextmanager
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
import plotly.express as px
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
+
from transformer_lens import HookedTransformer, utils
|
| 8 |
+
from functools import partial
|
| 9 |
+
from sae_lens import SAE
|
| 10 |
+
from contextlib import contextmanager
|
| 11 |
+
device = "cuda"
|
| 12 |
+
|
| 13 |
+
from sae_lens import SAE # pip install sae-lens
|
| 14 |
+
|
| 15 |
+
sae, cfg_dict, sparsity = SAE.from_pretrained(
|
| 16 |
+
release = "gemma-scope-2b-pt-res-canonical",
|
| 17 |
+
sae_id = "layer_20/width_16k/canonical",
|
| 18 |
+
device=device
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
sae_10, _, _ = SAE.from_pretrained(
|
| 22 |
+
release = "gemma-scope-2b-pt-res-canonical",
|
| 23 |
+
sae_id = "layer_10/width_16k/canonical",
|
| 24 |
+
device=device
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
sae_4, _, _ = SAE.from_pretrained(
|
| 28 |
+
release = "gemma-scope-2b-pt-res-canonical",
|
| 29 |
+
sae_id = "layer_4/width_16k/canonical",
|
| 30 |
+
device=device
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
model = HookedTransformer.from_pretrained_no_processing(
|
| 34 |
+
model_name="google/gemma-2-2b-it",
|
| 35 |
+
device=device,
|
| 36 |
+
dtype=torch.bfloat16,
|
| 37 |
+
default_padding_side="left"
|
| 38 |
+
)
|
| 39 |
+
layer = 20
|
| 40 |
+
sae.eval()
|
| 41 |
+
|
| 42 |
+
feature_dict = {
|
| 43 |
+
"dog": {
|
| 44 |
+
"sae": sae,
|
| 45 |
+
"index": 12082
|
| 46 |
+
},
|
| 47 |
+
"harry potter4": {
|
| 48 |
+
"sae": sae_4,
|
| 49 |
+
"index": 12445
|
| 50 |
+
},
|
| 51 |
+
"harry potter10": {
|
| 52 |
+
"sae": sae_10,
|
| 53 |
+
"index": 6520
|
| 54 |
+
}
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
def sae_hook(activation, hook, subject, strength):
|
| 58 |
+
feature = feature_dict[subject]
|
| 59 |
+
steering_vector = feature["sae"].W_dec[feature["index"]] * strength
|
| 60 |
+
return activation + steering_vector
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@contextmanager
|
| 64 |
+
def steering(subject, strength):
|
| 65 |
+
layers = list(range(model.cfg.n_layers))
|
| 66 |
+
for layer in layers:
|
| 67 |
+
model.add_hook(
|
| 68 |
+
utils.get_act_name('resid_pre', layer),
|
| 69 |
+
partial(sae_hook, subject=subject, strength=strength)
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
yield
|
| 73 |
+
|
| 74 |
+
model.reset_hooks()
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
batched_chat = [
|
| 78 |
+
[
|
| 79 |
+
{"role": "user",
|
| 80 |
+
"content": "What book is Hermione from?"}
|
| 81 |
+
]
|
| 82 |
+
]
|
| 83 |
+
|
| 84 |
+
tokens = model.tokenizer.apply_chat_template(
|
| 85 |
+
batched_chat,
|
| 86 |
+
padding=True,
|
| 87 |
+
tokenize=True,
|
| 88 |
+
return_tensors="pt"
|
| 89 |
+
)
|
| 90 |
+
print(tokens)
|
| 91 |
+
|
| 92 |
+
for i in range(2):
|
| 93 |
+
if i == 0:
|
| 94 |
+
print("steering")
|
| 95 |
+
with steering(subject="harry potter10", strength=-5):
|
| 96 |
+
with torch.set_grad_enabled(False):
|
| 97 |
+
batch_output = model.generate(tokens, max_new_tokens=256)
|
| 98 |
+
response_tokens = []
|
| 99 |
+
for prompt, combined in zip(tokens, batch_output):
|
| 100 |
+
response = combined[len(prompt):]
|
| 101 |
+
response_tokens.append(response)
|
| 102 |
+
|
| 103 |
+
responses = model.tokenizer.batch_decode(response_tokens, skip_special_tokens=True)
|
| 104 |
+
|
| 105 |
+
else:
|
| 106 |
+
print("no steering")
|
| 107 |
+
with torch.set_grad_enabled(False):
|
| 108 |
+
batch_output = model.generate(tokens, max_new_tokens=256)
|
| 109 |
+
response_tokens = []
|
| 110 |
+
for prompt, combined in zip(tokens, batch_output):
|
| 111 |
+
response = combined[len(prompt):]
|
| 112 |
+
response_tokens.append(response)
|
| 113 |
+
|
| 114 |
+
responses = model.tokenizer.batch_decode(response_tokens, skip_special_tokens=True)
|
| 115 |
+
|
| 116 |
+
print(responses[0])
|