--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: modlee_transformer results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: accuracy: 0.94184 - name: F1 type: f1 value: f1: 0.9419838799776555 --- # modlee_transformer This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2170 - Accuracy: {'accuracy': 0.94184} - F1: {'f1': 0.9419838799776555} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------------------:|:--------------------------:| | 0.2079 | 1.0 | 1563 | 0.2379 | {'accuracy': 0.9226} | {'f1': 0.9261929282526605} | | 0.1382 | 2.0 | 3126 | 0.2170 | {'accuracy': 0.94184} | {'f1': 0.9419838799776555} | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3