--- license: apache-2.0 tags: - generated_from_trainer datasets: - ingredients_yes_no metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ingredients results: - task: name: Token Classification type: token-classification dataset: name: ingredients_yes_no type: ingredients_yes_no args: IngredientsYesNo metrics: - name: Precision type: precision value: 0.9916855631141346 - name: Recall type: recall value: 0.9977186311787072 - name: F1 type: f1 value: 0.9946929492039424 - name: Accuracy type: accuracy value: 0.998049340218015 --- # distilbert-base-uncased-finetuned-ingredients This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ingredients_yes_no dataset. It achieves the following results on the evaluation set: - Loss: 0.0117 - Precision: 0.9917 - Recall: 0.9977 - F1: 0.9947 - Accuracy: 0.9980 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 199 | 0.0387 | 0.9431 | 0.9703 | 0.9565 | 0.9900 | | No log | 2.0 | 398 | 0.0195 | 0.9805 | 0.9916 | 0.9860 | 0.9960 | | 0.1062 | 3.0 | 597 | 0.0187 | 0.9842 | 0.9939 | 0.9890 | 0.9963 | | 0.1062 | 4.0 | 796 | 0.0120 | 0.9887 | 0.9954 | 0.9920 | 0.9976 | | 0.1062 | 5.0 | 995 | 0.0131 | 0.9887 | 0.9962 | 0.9924 | 0.9975 | | 0.0067 | 6.0 | 1194 | 0.0106 | 0.9917 | 0.9970 | 0.9943 | 0.9980 | | 0.0067 | 7.0 | 1393 | 0.0116 | 0.9909 | 0.9977 | 0.9943 | 0.9979 | | 0.002 | 8.0 | 1592 | 0.0118 | 0.9909 | 0.9977 | 0.9943 | 0.9979 | | 0.002 | 9.0 | 1791 | 0.0118 | 0.9917 | 0.9977 | 0.9947 | 0.9980 | | 0.002 | 10.0 | 1990 | 0.0117 | 0.9917 | 0.9977 | 0.9947 | 0.9980 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3