Update README.md
Browse files
README.md
CHANGED
|
@@ -79,22 +79,34 @@ Rank-16 LoRA adapter fine-tuned from **`deepseek-ai/DeepSeek-Prover-V2-7B`** on
|
|
| 79 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 80 |
import peft, torch
|
| 81 |
|
| 82 |
-
|
|
|
|
| 83 |
base_id = "deepseek-ai/DeepSeek-Prover-V2-7B"
|
| 84 |
|
|
|
|
| 85 |
tok = AutoTokenizer.from_pretrained(base_id, trust_remote_code=True)
|
| 86 |
-
tok.padding_side, tok.pad_token = "left", tok.eos_token
|
| 87 |
|
|
|
|
| 88 |
base = AutoModelForCausalLM.from_pretrained(
|
| 89 |
base_id,
|
| 90 |
torch_dtype=torch.bfloat16,
|
| 91 |
attn_implementation="flash_attention_2",
|
| 92 |
-
device_map="auto",
|
| 93 |
)
|
|
|
|
|
|
|
| 94 |
model = peft.PeftModel.from_pretrained(base, adapter_id)
|
| 95 |
model.eval()
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
print(tok.decode(out[0], skip_special_tokens=True))
|
|
|
|
| 79 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 80 |
import peft, torch
|
| 81 |
|
| 82 |
+
# --- Hub repo IDs -----------------------------------------------------------
|
| 83 |
+
adapter_id = "haielab/DeepSeek-Prover-V2-7B-conjecture-base-FineTune-new-config"
|
| 84 |
base_id = "deepseek-ai/DeepSeek-Prover-V2-7B"
|
| 85 |
|
| 86 |
+
# --- 1️⃣ Tokenizer ----------------------------------------------------------
|
| 87 |
tok = AutoTokenizer.from_pretrained(base_id, trust_remote_code=True)
|
| 88 |
+
tok.padding_side, tok.pad_token = "left", tok.eos_token # DeepSeek expects left-padding
|
| 89 |
|
| 90 |
+
# --- 2️⃣ Load base model ----------------------------------------------------
|
| 91 |
base = AutoModelForCausalLM.from_pretrained(
|
| 92 |
base_id,
|
| 93 |
torch_dtype=torch.bfloat16,
|
| 94 |
attn_implementation="flash_attention_2",
|
| 95 |
+
device_map="auto", # auto-place on available GPU(s)
|
| 96 |
)
|
| 97 |
+
|
| 98 |
+
# --- 3️⃣ Inject LoRA adapter ------------------------------------------------
|
| 99 |
model = peft.PeftModel.from_pretrained(base, adapter_id)
|
| 100 |
model.eval()
|
| 101 |
|
| 102 |
+
# --- 4️⃣ Generate proof continuation ---------------------------------------
|
| 103 |
+
prompt = "<user>Theorem foo …</user><assistant>"
|
| 104 |
+
inputs = tok(prompt, return_tensors="pt").to(model.device)
|
| 105 |
+
|
| 106 |
+
out = model.generate(
|
| 107 |
+
**inputs,
|
| 108 |
+
max_new_tokens=256,
|
| 109 |
+
temperature=0.7,
|
| 110 |
+
top_p=0.9,
|
| 111 |
+
)
|
| 112 |
print(tok.decode(out[0], skip_special_tokens=True))
|