haielab commited on
Commit
3c85891
·
verified ·
1 Parent(s): ccd79c8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -6
README.md CHANGED
@@ -79,22 +79,34 @@ Rank-16 LoRA adapter fine-tuned from **`deepseek-ai/DeepSeek-Prover-V2-7B`** on
79
  from transformers import AutoTokenizer, AutoModelForCausalLM
80
  import peft, torch
81
 
82
- adapter_id = "haielab/DeepSeek-Prover-V2-7B-LoRA-v1"
 
83
  base_id = "deepseek-ai/DeepSeek-Prover-V2-7B"
84
 
 
85
  tok = AutoTokenizer.from_pretrained(base_id, trust_remote_code=True)
86
- tok.padding_side, tok.pad_token = "left", tok.eos_token
87
 
 
88
  base = AutoModelForCausalLM.from_pretrained(
89
  base_id,
90
  torch_dtype=torch.bfloat16,
91
  attn_implementation="flash_attention_2",
92
- device_map="auto",
93
  )
 
 
94
  model = peft.PeftModel.from_pretrained(base, adapter_id)
95
  model.eval()
96
 
97
- prompt = "<user>Theorem foo …</user><assistant>"
98
- inputs = tok(prompt, return_tensors="pt").to(model.device)
99
- out = model.generate(**inputs, max_new_tokens=256, temperature=0.7, top_p=0.9)
 
 
 
 
 
 
 
100
  print(tok.decode(out[0], skip_special_tokens=True))
 
79
  from transformers import AutoTokenizer, AutoModelForCausalLM
80
  import peft, torch
81
 
82
+ # --- Hub repo IDs -----------------------------------------------------------
83
+ adapter_id = "haielab/DeepSeek-Prover-V2-7B-conjecture-base-FineTune-new-config"
84
  base_id = "deepseek-ai/DeepSeek-Prover-V2-7B"
85
 
86
+ # --- 1️⃣ Tokenizer ----------------------------------------------------------
87
  tok = AutoTokenizer.from_pretrained(base_id, trust_remote_code=True)
88
+ tok.padding_side, tok.pad_token = "left", tok.eos_token # DeepSeek expects left-padding
89
 
90
+ # --- 2️⃣ Load base model ----------------------------------------------------
91
  base = AutoModelForCausalLM.from_pretrained(
92
  base_id,
93
  torch_dtype=torch.bfloat16,
94
  attn_implementation="flash_attention_2",
95
+ device_map="auto", # auto-place on available GPU(s)
96
  )
97
+
98
+ # --- 3️⃣ Inject LoRA adapter ------------------------------------------------
99
  model = peft.PeftModel.from_pretrained(base, adapter_id)
100
  model.eval()
101
 
102
+ # --- 4️⃣ Generate proof continuation ---------------------------------------
103
+ prompt = "<user>Theorem foo …</user><assistant>"
104
+ inputs = tok(prompt, return_tensors="pt").to(model.device)
105
+
106
+ out = model.generate(
107
+ **inputs,
108
+ max_new_tokens=256,
109
+ temperature=0.7,
110
+ top_p=0.9,
111
+ )
112
  print(tok.decode(out[0], skip_special_tokens=True))