--- library_name: transformers license: apache-2.0 base_model: google/vit-large-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: vit_itri_downsample_normal_2class results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.788020919807405 - name: Precision type: precision value: 0.8677060975195995 - name: Recall type: recall value: 0.788020919807405 - name: F1 type: f1 value: 0.8034489412987279 --- # vit_itri_downsample_normal_2class This model is a fine-tuned version of [google/vit-large-patch16-224](https://huggingface.co/google/vit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6672 - Accuracy: 0.7880 - Precision: 0.8677 - Recall: 0.7880 - F1: 0.8034 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 24 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2527 | 1.0 | 342 | 1.4323 | 0.6135 | 0.8417 | 0.6135 | 0.6373 | | 0.1052 | 2.0 | 684 | 1.1099 | 0.6818 | 0.8441 | 0.6818 | 0.7058 | | 0.0722 | 3.0 | 1026 | 0.7571 | 0.8196 | 0.8691 | 0.8196 | 0.8309 | | 0.0364 | 4.0 | 1368 | 1.1982 | 0.7126 | 0.8538 | 0.7126 | 0.7347 | | 0.0211 | 5.0 | 1710 | 1.8288 | 0.6682 | 0.8450 | 0.6682 | 0.6925 | | 0.0154 | 6.0 | 2052 | 1.7574 | 0.7124 | 0.8537 | 0.7124 | 0.7345 | | 0.0126 | 7.0 | 2394 | 2.0744 | 0.7140 | 0.8536 | 0.7140 | 0.7360 | | 0.0027 | 8.0 | 2736 | 1.6455 | 0.7868 | 0.8658 | 0.7868 | 0.8023 | | 0.0024 | 9.0 | 3078 | 1.8174 | 0.7700 | 0.8630 | 0.7700 | 0.7873 | | 0.0016 | 10.0 | 3420 | 1.6672 | 0.7880 | 0.8677 | 0.7880 | 0.8034 | ### Framework versions - Transformers 4.53.0.dev0 - Pytorch 2.7.1+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1