--- license: apache-2.0 tags: - gguf - qwen - qwen3 - qwen3-coder - qwen3-coder-f32 - qwen3-coder-30B - qwen3-coder-30B-f32 - qwen3-coder-30B-gguf - qwen3-coder-30B-gguf-f32 - llama.cpp - quantized - text-generation - reasoning - agent - multilingual base_model: Qwen/Qwen3-Coder-30B-A3B-Instruct author: geoffmunn pipeline_tag: text-generation language: - en - zh - es - fr - de - ru - ar - ja - ko - hi --- # Qwen3-Coder-30B-A3B-Instruct-f32-GGUF This is a **GGUF-quantized version** of the **[Qwen/Qwen3-Coder-30B-A3B-Instruct](https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct)** language model. Converted for use with `llama.cpp`, [LM Studio](https://lmstudio.ai), [OpenWebUI](https://openwebui.com), [GPT4All](https://gpt4all.io), and more. # Why f32? This model uses **FP32 (32-bit floating point)** as its base precision. This is unusual for GGUF models because: - FP32 doubles memory usage vs FP16. - Modern LLMs (including Qwen3) are trained in mixed precision and **do not benefit** from FP32 at inference time. - Only useful for **debugging**, **research**, or **extreme numerical robustness**. F16 is probably a better choice, but you can use this to compare the difference in outputs (if any). 💡 **Key Features of Qwen3-Coder-30B-A3B-Instruct:** ## Available Quantizations (from f32) | Level | Quality | Speed | Size | Recommendation | |----------|----------------|-----------|-----------|------------------------------------------------| | Q2_K | Minimal | ⚡ Fast | 11.3 GB | Only on severely memory-constrained systems. | | Q3_K_S | Low-Medium | ⚡ Fast | 13.3 GB | Minimal viability; avoid unless space-limited. | | Q3_K_M | Low-Medium | ⚡ Fast | 14,7 GB | Acceptable for basic interaction. | | Q4_K_S | Practical | ⚡ Fast | 17.5 GB | Good balance for mobile/embedded platforms. | | Q4_K_M | Practical | ⚡ Fast | 18.6 GB | Best overall choice for most users. | | Q5_K_S | Max Reasoning | 🐢 Medium | 21.1 GB | Slight quality gain; good for testing. | | Q5_K_M | Max Reasoning | 🐢 Medium | 21.7 GB | Best quality available. Recommended. | | Q6_K | Near-FP16 | 🐌 Slow | 25.1 GB | Diminishing returns. Only if RAM allows. | | Q8_0 | Lossless* | 🐌 Slow | 32.5 GB | Maximum fidelity. Ideal for archival. | > 💡 **Recommendations by Use Case** - 💻 **Standard Laptop (i5/M1 Mac)**: Q5_K_M (optimal quality) - 🧠 **Reasoning, Coding, Math**: Q5_K_M or Q6_K - 🔍 **RAG, Retrieval, Precision Tasks**: Q6_K or Q8_0 - 🤖 **Agent & Tool Integration**: Q5_K_M - 🛠️ **Development & Testing**: Test from Q4_K_M up to Q8_0 ## Usage Load this model using: - [OpenWebUI](https://openwebui.com) – self-hosted AI interface with RAG & tools - [LM Studio](https://lmstudio.ai) – desktop app with GPU support - [GPT4All](https://gpt4all.io) – private, offline AI chatbot - Or directly via `llama.cpp` Each quantized model includes its own `README.md` and shares a common `MODELFILE`. ## Author 👤 Geoff Munn (@geoffmunn) 🔗 [Hugging Face Profile](https://huggingface.co/geoffmunn) ## Disclaimer This is a community conversion for local inference. Not affiliated with Alibaba Cloud or the Qwen team.