Version_weird_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold1

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1309
  • Qwk: 0.5189
  • Mse: 1.1305
  • Rmse: 1.0632

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 1 12.5740 -0.0003 12.5713 3.5456
No log 2.0 2 10.8014 0.0088 10.7983 3.2861
No log 3.0 3 10.0333 0.0041 10.0308 3.1671
No log 4.0 4 9.0135 0.0 9.0110 3.0018
No log 5.0 5 7.8288 0.0 7.8265 2.7976
No log 6.0 6 6.8564 0.0 6.8543 2.6181
No log 7.0 7 6.0657 -0.0038 6.0636 2.4624
No log 8.0 8 5.2253 0.0150 5.2232 2.2854
No log 9.0 9 4.3913 0.0040 4.3894 2.0951
No log 10.0 10 3.9496 0.0040 3.9476 1.9869
No log 11.0 11 3.5993 0.0 3.5973 1.8967
No log 12.0 12 3.1575 0.0 3.1556 1.7764
No log 13.0 13 2.7309 0.0 2.7290 1.6520
No log 14.0 14 2.4330 -0.0248 2.4312 1.5592
No log 15.0 15 2.0834 0.0426 2.0817 1.4428
No log 16.0 16 1.7675 0.0418 1.7659 1.3289
No log 17.0 17 1.6028 0.0315 1.6013 1.2654
No log 18.0 18 1.4872 0.0211 1.4857 1.2189
No log 19.0 19 1.3808 0.0106 1.3793 1.1744
No log 20.0 20 1.2609 0.0 1.2594 1.1222
No log 21.0 21 1.1246 0.0 1.1232 1.0598
No log 22.0 22 1.0317 0.0 1.0303 1.0151
No log 23.0 23 0.9622 0.0 0.9609 0.9802
No log 24.0 24 0.8966 0.2075 0.8953 0.9462
No log 25.0 25 0.8800 0.2097 0.8788 0.9374
No log 26.0 26 0.8632 0.2104 0.8620 0.9284
No log 27.0 27 0.7932 0.2525 0.7921 0.8900
No log 28.0 28 0.7208 0.3412 0.7197 0.8483
No log 29.0 29 0.6937 0.3181 0.6926 0.8322
No log 30.0 30 0.7237 0.2705 0.7227 0.8501
No log 31.0 31 0.6996 0.2960 0.6986 0.8358
No log 32.0 32 0.6294 0.3766 0.6284 0.7927
No log 33.0 33 0.5427 0.4519 0.5418 0.7361
No log 34.0 34 0.4997 0.5094 0.4988 0.7063
No log 35.0 35 0.5241 0.4893 0.5233 0.7234
No log 36.0 36 0.5243 0.4948 0.5235 0.7235
No log 37.0 37 0.5915 0.4691 0.5907 0.7686
No log 38.0 38 0.5673 0.4962 0.5665 0.7527
No log 39.0 39 0.5203 0.6145 0.5196 0.7208
No log 40.0 40 0.5670 0.6093 0.5663 0.7526
No log 41.0 41 0.6641 0.5452 0.6634 0.8145
No log 42.0 42 0.7402 0.5215 0.7395 0.8599
No log 43.0 43 0.7829 0.5248 0.7823 0.8845
No log 44.0 44 0.7472 0.5472 0.7466 0.8640
No log 45.0 45 0.7368 0.5631 0.7362 0.8580
No log 46.0 46 0.8122 0.5450 0.8116 0.9009
No log 47.0 47 0.7932 0.5644 0.7927 0.8903
No log 48.0 48 0.7381 0.5918 0.7376 0.8588
No log 49.0 49 0.8549 0.5576 0.8544 0.9243
No log 50.0 50 0.9385 0.5304 0.9380 0.9685
No log 51.0 51 0.8605 0.5666 0.8601 0.9274
No log 52.0 52 0.8364 0.5718 0.8360 0.9143
No log 53.0 53 1.0331 0.5290 1.0327 1.0162
No log 54.0 54 0.9910 0.5409 0.9906 0.9953
No log 55.0 55 1.0710 0.5255 1.0707 1.0347
No log 56.0 56 0.9077 0.5777 0.9074 0.9526
No log 57.0 57 0.9744 0.5590 0.9741 0.9869
No log 58.0 58 1.1406 0.5228 1.1402 1.0678
No log 59.0 59 1.1309 0.5189 1.1305 1.0632

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold1

Finetuned
(6022)
this model