genki10's picture
Best model for k=10, fold=2
5813f09 verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
model-index:
  - name: Version3ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold2
    results: []

Version3ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold2

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7081
  • Qwk: 0.5886
  • Mse: 0.7076
  • Rmse: 0.8412

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 3 10.7808 -0.0004 10.7811 3.2835
No log 2.0 6 7.8207 0.0 7.8208 2.7966
No log 3.0 9 5.4718 0.0147 5.4722 2.3393
No log 4.0 12 4.0428 0.0039 4.0432 2.0108
No log 5.0 15 2.8634 0.0 2.8638 1.6923
No log 6.0 18 2.0999 0.0847 2.1003 1.4493
No log 7.0 21 1.5505 0.0107 1.5509 1.2454
No log 8.0 24 1.1710 0.0107 1.1714 1.0823
No log 9.0 27 0.9625 0.0 0.9630 0.9813
No log 10.0 30 0.8309 0.0430 0.8314 0.9118
No log 11.0 33 0.8321 0.0327 0.8326 0.9124
No log 12.0 36 1.0067 0.0164 1.0072 1.0036
No log 13.0 39 1.2984 0.1608 1.2988 1.1396
No log 14.0 42 1.2769 0.2402 1.2770 1.1300
No log 15.0 45 1.7979 0.0887 1.7980 1.3409
No log 16.0 48 0.9769 0.3626 0.9765 0.9882
No log 17.0 51 1.2823 0.3397 1.2814 1.1320
No log 18.0 54 0.8398 0.4649 0.8387 0.9158
No log 19.0 57 0.6987 0.5202 0.6979 0.8354
No log 20.0 60 0.8365 0.5647 0.8352 0.9139
No log 21.0 63 0.8968 0.4973 0.8966 0.9469
No log 22.0 66 0.8559 0.5703 0.8549 0.9246
No log 23.0 69 0.7903 0.5742 0.7896 0.8886
No log 24.0 72 0.8975 0.5165 0.8974 0.9473
No log 25.0 75 0.8517 0.5799 0.8510 0.9225
No log 26.0 78 0.7421 0.5633 0.7420 0.8614
No log 27.0 81 0.9198 0.5586 0.9189 0.9586
No log 28.0 84 0.6642 0.6112 0.6636 0.8146
No log 29.0 87 1.4510 0.4515 1.4495 1.2040
No log 30.0 90 0.8165 0.5778 0.8155 0.9030
No log 31.0 93 0.9218 0.4588 0.9217 0.9601
No log 32.0 96 0.7112 0.5726 0.7106 0.8430
No log 33.0 99 1.0820 0.5136 1.0804 1.0394
No log 34.0 102 0.9525 0.4967 0.9520 0.9757
No log 35.0 105 0.7906 0.5404 0.7900 0.8888
No log 36.0 108 1.2678 0.4394 1.2665 1.1254
No log 37.0 111 1.0744 0.4724 1.0735 1.0361
No log 38.0 114 0.8404 0.5616 0.8395 0.9162
No log 39.0 117 0.8493 0.5609 0.8486 0.9212
No log 40.0 120 0.8786 0.5563 0.8779 0.9370
No log 41.0 123 0.7582 0.5894 0.7574 0.8703
No log 42.0 126 0.6573 0.5947 0.6567 0.8104
No log 43.0 129 0.8428 0.5411 0.8422 0.9177
No log 44.0 132 1.5438 0.3934 1.5429 1.2421
No log 45.0 135 1.2301 0.4344 1.2294 1.1088
No log 46.0 138 0.7225 0.5964 0.7219 0.8497
No log 47.0 141 0.7421 0.5906 0.7415 0.8611
No log 48.0 144 0.7081 0.5886 0.7076 0.8412

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0