File size: 5,374 Bytes
5813f09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: Version3ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Version3ASAP_FineTuningBERT_AugV12_k10_task1_organization_k10_k10_fold2

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7081
- Qwk: 0.5886
- Mse: 0.7076
- Rmse: 0.8412

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Qwk     | Mse     | Rmse   |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:------:|
| No log        | 1.0   | 3    | 10.7808         | -0.0004 | 10.7811 | 3.2835 |
| No log        | 2.0   | 6    | 7.8207          | 0.0     | 7.8208  | 2.7966 |
| No log        | 3.0   | 9    | 5.4718          | 0.0147  | 5.4722  | 2.3393 |
| No log        | 4.0   | 12   | 4.0428          | 0.0039  | 4.0432  | 2.0108 |
| No log        | 5.0   | 15   | 2.8634          | 0.0     | 2.8638  | 1.6923 |
| No log        | 6.0   | 18   | 2.0999          | 0.0847  | 2.1003  | 1.4493 |
| No log        | 7.0   | 21   | 1.5505          | 0.0107  | 1.5509  | 1.2454 |
| No log        | 8.0   | 24   | 1.1710          | 0.0107  | 1.1714  | 1.0823 |
| No log        | 9.0   | 27   | 0.9625          | 0.0     | 0.9630  | 0.9813 |
| No log        | 10.0  | 30   | 0.8309          | 0.0430  | 0.8314  | 0.9118 |
| No log        | 11.0  | 33   | 0.8321          | 0.0327  | 0.8326  | 0.9124 |
| No log        | 12.0  | 36   | 1.0067          | 0.0164  | 1.0072  | 1.0036 |
| No log        | 13.0  | 39   | 1.2984          | 0.1608  | 1.2988  | 1.1396 |
| No log        | 14.0  | 42   | 1.2769          | 0.2402  | 1.2770  | 1.1300 |
| No log        | 15.0  | 45   | 1.7979          | 0.0887  | 1.7980  | 1.3409 |
| No log        | 16.0  | 48   | 0.9769          | 0.3626  | 0.9765  | 0.9882 |
| No log        | 17.0  | 51   | 1.2823          | 0.3397  | 1.2814  | 1.1320 |
| No log        | 18.0  | 54   | 0.8398          | 0.4649  | 0.8387  | 0.9158 |
| No log        | 19.0  | 57   | 0.6987          | 0.5202  | 0.6979  | 0.8354 |
| No log        | 20.0  | 60   | 0.8365          | 0.5647  | 0.8352  | 0.9139 |
| No log        | 21.0  | 63   | 0.8968          | 0.4973  | 0.8966  | 0.9469 |
| No log        | 22.0  | 66   | 0.8559          | 0.5703  | 0.8549  | 0.9246 |
| No log        | 23.0  | 69   | 0.7903          | 0.5742  | 0.7896  | 0.8886 |
| No log        | 24.0  | 72   | 0.8975          | 0.5165  | 0.8974  | 0.9473 |
| No log        | 25.0  | 75   | 0.8517          | 0.5799  | 0.8510  | 0.9225 |
| No log        | 26.0  | 78   | 0.7421          | 0.5633  | 0.7420  | 0.8614 |
| No log        | 27.0  | 81   | 0.9198          | 0.5586  | 0.9189  | 0.9586 |
| No log        | 28.0  | 84   | 0.6642          | 0.6112  | 0.6636  | 0.8146 |
| No log        | 29.0  | 87   | 1.4510          | 0.4515  | 1.4495  | 1.2040 |
| No log        | 30.0  | 90   | 0.8165          | 0.5778  | 0.8155  | 0.9030 |
| No log        | 31.0  | 93   | 0.9218          | 0.4588  | 0.9217  | 0.9601 |
| No log        | 32.0  | 96   | 0.7112          | 0.5726  | 0.7106  | 0.8430 |
| No log        | 33.0  | 99   | 1.0820          | 0.5136  | 1.0804  | 1.0394 |
| No log        | 34.0  | 102  | 0.9525          | 0.4967  | 0.9520  | 0.9757 |
| No log        | 35.0  | 105  | 0.7906          | 0.5404  | 0.7900  | 0.8888 |
| No log        | 36.0  | 108  | 1.2678          | 0.4394  | 1.2665  | 1.1254 |
| No log        | 37.0  | 111  | 1.0744          | 0.4724  | 1.0735  | 1.0361 |
| No log        | 38.0  | 114  | 0.8404          | 0.5616  | 0.8395  | 0.9162 |
| No log        | 39.0  | 117  | 0.8493          | 0.5609  | 0.8486  | 0.9212 |
| No log        | 40.0  | 120  | 0.8786          | 0.5563  | 0.8779  | 0.9370 |
| No log        | 41.0  | 123  | 0.7582          | 0.5894  | 0.7574  | 0.8703 |
| No log        | 42.0  | 126  | 0.6573          | 0.5947  | 0.6567  | 0.8104 |
| No log        | 43.0  | 129  | 0.8428          | 0.5411  | 0.8422  | 0.9177 |
| No log        | 44.0  | 132  | 1.5438          | 0.3934  | 1.5429  | 1.2421 |
| No log        | 45.0  | 135  | 1.2301          | 0.4344  | 1.2294  | 1.1088 |
| No log        | 46.0  | 138  | 0.7225          | 0.5964  | 0.7219  | 0.8497 |
| No log        | 47.0  | 141  | 0.7421          | 0.5906  | 0.7415  | 0.8611 |
| No log        | 48.0  | 144  | 0.7081          | 0.5886  | 0.7076  | 0.8412 |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0