# Model Usage Instructions ## Loading the Model ```python import torch from pathlib import Path # Load the main LAM model (14GB) model_path = "model_weights/lam_model.pt" model = torch.load(model_path, map_location='cuda' if torch.cuda.is_available() else 'cpu') # Or load the smaller checkpoint checkpoint = torch.load("checkpoints/best.pt") ``` ## Model Files - `model_weights/lam_model.pt` - Main unified model (14GB) - `checkpoints/best.pt` - Best training checkpoint (6MB) - `model_weights/sample_vision_weights.pt` - Vision module weights - `model_weights/config.json` - Model configuration - `model_weights/capabilities.json` - Model capabilities definition ## Requirements ```bash pip install torch torchvision transformers pillow ``` ## Inference Example ```python # Coming soon - full inference pipeline ```