Qwen3-1.7B-alpaca-cleaned - LoRA Adapters
Fine-tuned LoRA adapters for unsloth/Qwen3-1.7B-unsloth-bnb-4bit using supervised fine-tuning.
Model Details
- Base Model: unsloth/Qwen3-1.7B-unsloth-bnb-4bit
- Training Method: LoRA (Low-Rank Adaptation)
- Dataset: yahma/alpaca-cleaned
- Training Framework: Unsloth + TRL + Transformers
- Adapter Type: PEFT LoRA adapters only (requires base model)
Training Configuration
LoRA Parameters
- LoRA Rank (r): 16
- LoRA Alpha: 32
- LoRA Dropout: 0.0
- Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
Training Hyperparameters
- Learning Rate: 0.0002
- Batch Size: 4
- Gradient Accumulation Steps: 8
- Effective Batch Size: 32
- Epochs: 1
- Max Sequence Length: 4096
- Optimizer: adamw_8bit
- Packing: True
- Weight Decay: 0.01
- Learning Rate Scheduler: linear
Training Results
- Training Loss: 1.3403
- Training Time: 53.0 minutes
- Training Steps: Unknown
- Dataset Samples: See dataset
- Training Mode: Full training
Usage
Load with Transformers + PEFT
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
"unsloth/Qwen3-1.7B-unsloth-bnb-4bit",
load_in_4bit=True,
device_map="auto"
)
# Load LoRA adapters
model = PeftModel.from_pretrained(base_model, "path/to/lora")
tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen3-1.7B-unsloth-bnb-4bit")
# Generate
messages = [{"role": "user", "content": "Your question here"}]
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
outputs = model.generate(input_ids, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Load with Unsloth (Recommended)
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="path/to/lora",
max_seq_length=4096,
dtype=None,
load_in_4bit=True,
)
# For inference
FastLanguageModel.for_inference(model)
# Generate
messages = [{"role": "user", "content": "Your question here"}]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt").to("cuda")
outputs = model.generate(input_ids=inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Related Models
- Merged Model: fs90/Qwen3-1.7B-alpaca-cleaned - Ready-to-use merged model
- GGUF Quantized: fs90/Qwen3-1.7B-alpaca-cleaned-gguf - GGUF format for llama.cpp/Ollama
Dataset
Training dataset: yahma/alpaca-cleaned
Please refer to the dataset documentation for licensing and usage restrictions.
Merge with Base Model
To create a standalone merged model:
from unsloth import FastLanguageModel
# Load model with LoRA
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="path/to/lora",
max_seq_length=4096,
dtype=None,
load_in_4bit=True,
)
# Save merged 16-bit model
model.save_pretrained_merged("merged_model", tokenizer, save_method="merged_16bit")
# Or save as GGUF for llama.cpp/Ollama
model.save_pretrained_gguf("model.gguf", tokenizer, quantization_method="q4_k_m")
Framework Versions
- Unsloth: 2025.11.3
- Transformers: 4.57.1
- PyTorch: 2.9.0+cu128
- PEFT: 0.18.0
- TRL: 0.22.2
- Datasets: 4.3.0
License
This model is based on unsloth/Qwen3-1.7B-unsloth-bnb-4bit and trained on yahma/alpaca-cleaned. Please refer to the original model and dataset licenses for usage terms.
Credits
Trained by: Farhan Syah
Training pipeline:
- unsloth-finetuning by @farhan-syah
- Unsloth - 2x faster LLM fine-tuning
Base components:
- Base model: unsloth/Qwen3-1.7B-unsloth-bnb-4bit
- Training dataset: yahma/alpaca-cleaned by yahma
Citation
If you use this model, please cite:
@misc{qwen3_1.7b_alpaca_cleaned_lora,
author = {Farhan Syah},
title = {Qwen3-1.7B-alpaca-cleaned Fine-tuned with LoRA},
year = {2025},
note = {Fine-tuned using Unsloth: https://github.com/unslothai/unsloth},
howpublished = {\url{https://github.com/farhan-syah/unsloth-finetuning}}
}
- Downloads last month
- 28
Model tree for fs90/Qwen3-1.7B-alpaca-cleaned-lora
Base model
Qwen/Qwen3-1.7B-Base
Finetuned
Qwen/Qwen3-1.7B
Quantized
unsloth/Qwen3-1.7B-unsloth-bnb-4bit