--- library_name: peft license: other base_model: ibm-granite/granite-3.3-8b-instruct tags: - llama-factory - lora - generated_from_trainer metrics: - accuracy model-index: - name: factory_granite_results results: [] --- # factory_granite_results This model is a fine-tuned version of [ibm-granite/granite-3.3-8b-instruct](https://huggingface.co/ibm-granite/granite-3.3-8b-instruct) on the train dataset. It achieves the following results on the evaluation set: - Loss: 0.2523 - Accuracy: 0.9475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 9.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4051 | 1.0 | 32 | 0.4305 | 0.8978 | | 0.2886 | 2.0 | 64 | 0.3232 | 0.9206 | | 0.2289 | 3.0 | 96 | 0.2742 | 0.9323 | | 0.1925 | 4.0 | 128 | 0.2514 | 0.9387 | | 0.1079 | 5.0 | 160 | 0.2456 | 0.9420 | | 0.0968 | 6.0 | 192 | 0.2410 | 0.9454 | | 0.0835 | 7.0 | 224 | 0.2464 | 0.9466 | | 0.0716 | 8.0 | 256 | 0.2516 | 0.9472 | | 0.0611 | 9.0 | 288 | 0.2523 | 0.9475 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.4 - Pytorch 2.7.0 - Datasets 3.6.0 - Tokenizers 0.21.1