File size: 5,085 Bytes
1c743b6 5fae3a6 1c743b6 5fae3a6 1c743b6 5fae3a6 1c743b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
---
language:
- en
library_name: transformers
tags:
- reasoning
- reinforcement-learning
- rlvr
- mcts
- math
- iclr-2026
license: apache-2.0
datasets:
- DeepMath-103K
model-index:
- name: DeepSearch-1.5B
results:
- task:
name: Mathematical Reasoning
type: text-generation
dataset:
name: AIME 2024
type: text
metrics:
- type: pass@1
value: 53.65
- task:
name: Mathematical Reasoning
type: text-generation
dataset:
name: AIME 2025
type: text
metrics:
- type: pass@1
value: 35.42
- task:
name: Mathematical Reasoning
type: text-generation
dataset:
name: AMC 2023
type: text
metrics:
- type: pass@1
value: 90.39
- task:
name: Mathematical Reasoning
type: text-generation
dataset:
name: MATH500
type: text
metrics:
- type: pass@1
value: 92.53
- task:
name: Mathematical Reasoning
type: text-generation
dataset:
name: Minerva
type: text
metrics:
- type: pass@1
value: 40.00
- task:
name: Mathematical Reasoning
type: text-generation
dataset:
name: Olympiad
type: text
metrics:
- type: pass@1
value: 65.72
---
<div align="center">
<span style="font-family: default; font-size: 1.5em;">🚀 DeepSearch-1.5B</span>
</div>
**DeepSearch-1.5B🌟** is a 1.5B parameter reasoning model trained with **Reinforcement Learning with Verifiable Rewards (RLVR)**, enhanced by **Monte Carlo Tree Search (MCTS)**.
Unlike prior approaches that restrict structured search to inference, DeepSearch integrates MCTS *into training*, enabling systematic exploration, fine-grained credit assignment, and efficient replay buffering.
This model achieves **state-of-the-art accuracy among 1.5B reasoning models** while being **72× more compute-efficient** than extended RL training baselines.

---
## Model Details
- **Developed by**: Fang Wu\*, Weihao Xuan\*, Heli Qi\*, Ximing Lu, Aaron Tu, Li Erran Li, Yejin Choi
- **Institutional affiliations**: Stanford University, University of Tokyo, RIKEN AIP, University of Washington, UC Berkeley, Amazon AWS, Columbia University
- **Paper**: DeepSearch: Overcome the Bottleneck of Reinforcement Learning with Verifiable Rewards via Monte Carlo Tree Search
- **Base Model**: Nemotron-Research-Reasoning-Qwen-1.5B v2
- **Parameters**: 1.5B
- **Framework**: veRL
- **License**: Apache-2.0
---
## Quickstart
### Environment
```
pip install vllm # vllm>=v0.8.5.post1 should work
pip install transformers # transformers>=4.52.4 should work
```
### Using vLLM to generate
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
def convert_question_to_messages(question: str):
messages = [
{"role": "user",
"content": question + " Let's think step by step and output the final answer within \\boxed{}."}
]
return messages
model_id="ethan1115/DeepSearch-1.5B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
sampling_params = SamplingParams(
temperature=0.6,
top_p=0.95,
max_tokens=32768
)
model = LLM(
model=model_id,
tensor_parallel_size=1
)
prompt = tokenizer.apply_chat_template(
convert_question_to_messages("Find the sum of all integer bases $b>9$ for which $17_{b}$ is a divisor of $97_{b}$."),
add_generation_prompt=True,
tokenize=False
)
outputs = model.generate({"prompt": prompt}, sampling_params=sampling_params, use_tqdm=False)
response = outputs[0].outputs[0].text
print(response)
```
## Performance
| Benchmark | Nemotron-RR-Qwen-1.5B v2 | DeepSearch-1.5B |
|-----------|--------------------------|-----------------|
| AIME 2024 | 51.77 | **53.65** |
| AIME 2025 | 32.92 | **35.42** |
| AMC 2023 | 88.83 | **90.39** |
| MATH500 | 92.24 | **92.53** |
| Minerva | 39.75 | **40.00** |
| Olympiad | 64.69 | **65.72** |
| **Average** | 61.70 | **62.95** |
DeepSearch improves average accuracy by **+1.25 points** over the best prior 1.5B model, while using **5.7× fewer GPU hours**.
## Training
- **Dataset**: DeepMath-103K (rigorously decontaminated)
- **Training steps**: 100
- **Search strategy**:
- Global Frontier Selection
- Entropy-based guidance
- Replay buffer with solution caching
- **Hardware**: 16× NVIDIA H100 (96GB)
- **Compute**: ~330 GPU hours
---
## Ethical Considerations
- Positive: Reduces training costs and carbon footprint.
- Risks: Systematic exploration methods could be adapted to sensitive domains (e.g., code synthesis).
- Transparency: Full implementation and training details are released for reproducibility.
---
## Citation
```bibtex
@inproceedings{wu2026deepsearch,
title={DeepSearch: Overcome the Bottleneck of Reinforcement Learning with Verifiable Rewards via Monte Carlo Tree Search},
author={Fang Wu and Weihao Xuan and Heli Qi and Ximing Lu and Aaron Tu and Li Erran Li and Yejin Choi},
booktitle={arXiv},
year={2026}
}
|