Added Vbai-1.2 Dementia
Browse files
Main Models/Vbai-1.2 Dementia/README.md
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Vbai-1.2 Dementia (11178564 parametre)
|
| 2 |
+
|
| 3 |
+
## "Vbai-1.2 Dementia" modeli, bir önceki modele göre daha fazla veriyle eğitilmiş olup üzerinde ince ayar yapılmış versiyonudur.
|
| 4 |
+
|
| 5 |
+
## -----------------------------------------------------------------------------------
|
| 6 |
+
|
| 7 |
+
# Vbai-1.2 Dementia (11178564 parameters)
|
| 8 |
+
|
| 9 |
+
## The "Vbai-1.2 Dementia" model is a fine-tuned version of the previous model, trained with more data.
|
| 10 |
+
|
| 11 |
+
[](https://youtu.be/wDfsFwusGQU)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# Kullanım / Usage
|
| 15 |
+
|
| 16 |
+
```python
|
| 17 |
+
import torch
|
| 18 |
+
import torch.nn as nn
|
| 19 |
+
from torchvision import transforms, models
|
| 20 |
+
from PIL import Image
|
| 21 |
+
import matplotlib.pyplot as plt
|
| 22 |
+
import os
|
| 23 |
+
from torchsummary import summary
|
| 24 |
+
|
| 25 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 26 |
+
|
| 27 |
+
model = models.resnet18(pretrained=False)
|
| 28 |
+
num_ftrs = model.fc.in_features
|
| 29 |
+
model.fc = nn.Linear(num_ftrs, 4)
|
| 30 |
+
model.load_state_dict(torch.load('Vbai-1.2 Dementia/path'))
|
| 31 |
+
model = model.to(device)
|
| 32 |
+
model.eval()
|
| 33 |
+
summary(model, (3, 224, 224))
|
| 34 |
+
|
| 35 |
+
transform = transforms.Compose([
|
| 36 |
+
transforms.Resize((224, 224)),
|
| 37 |
+
transforms.ToTensor(),
|
| 38 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 39 |
+
])
|
| 40 |
+
|
| 41 |
+
class_names = ['No Dementia', 'Mild Dementia', 'Avarage Dementia', 'Very Mild Dementia']
|
| 42 |
+
|
| 43 |
+
def predict(image_path, model, transform):
|
| 44 |
+
image = Image.open(image_path).convert('RGB')
|
| 45 |
+
image = transform(image).unsqueeze(0).to(device)
|
| 46 |
+
model.eval()
|
| 47 |
+
with torch.no_grad():
|
| 48 |
+
outputs = model(image)
|
| 49 |
+
probs = torch.nn.functional.softmax(outputs, dim=1)
|
| 50 |
+
_, preds = torch.max(outputs, 1)
|
| 51 |
+
return preds.item(), probs[0][preds.item()].item()
|
| 52 |
+
|
| 53 |
+
def show_image_with_prediction(image_path, prediction, confidence, class_names):
|
| 54 |
+
image = Image.open(image_path)
|
| 55 |
+
plt.imshow(image)
|
| 56 |
+
plt.title(f"Prediction: {class_names[prediction]} (%{confidence * 100:.2f})")
|
| 57 |
+
plt.axis('off')
|
| 58 |
+
plt.show()
|
| 59 |
+
|
| 60 |
+
test_image_path = 'image-path'
|
| 61 |
+
prediction, confidence = predict(test_image_path, model, transform)
|
| 62 |
+
print(f'Prediction: {class_names[prediction]} (%{confidence * 100})')
|
| 63 |
+
|
| 64 |
+
show_image_with_prediction(test_image_path, prediction, confidence, class_names)
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
# Uygulama / As App
|
| 68 |
+
|
| 69 |
+
```python
|
| 70 |
+
import sys
|
| 71 |
+
import torch
|
| 72 |
+
import torch.nn as nn
|
| 73 |
+
from torchvision import transforms, models
|
| 74 |
+
from PIL import Image
|
| 75 |
+
import matplotlib.pyplot as plt
|
| 76 |
+
from PyQt5.QtWidgets import QApplication, QWidget, QPushButton, QLabel, QFileDialog, QVBoxLayout, QMessageBox
|
| 77 |
+
from PyQt5.QtGui import QPixmap, QIcon
|
| 78 |
+
from PyQt5.QtCore import Qt
|
| 79 |
+
|
| 80 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 81 |
+
|
| 82 |
+
transform = transforms.Compose([
|
| 83 |
+
transforms.Resize((224, 224)),
|
| 84 |
+
transforms.ToTensor(),
|
| 85 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 86 |
+
])
|
| 87 |
+
|
| 88 |
+
class_names = ['No Dementia', 'Mild Dementia', 'Avarage Dementia', 'Very Mild Dementia']
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
class DementiaApp(QWidget):
|
| 92 |
+
def __init__(self):
|
| 93 |
+
super().__init__()
|
| 94 |
+
self.initUI()
|
| 95 |
+
self.model = None
|
| 96 |
+
self.image_path = None
|
| 97 |
+
|
| 98 |
+
def initUI(self):
|
| 99 |
+
self.setWindowTitle('Prediction App by Neurazum')
|
| 100 |
+
self.setWindowIcon(QIcon('C:/Users/eyupi/PycharmProjects/Neurazum/NeurAI/Assets/neurazumicon.ico'))
|
| 101 |
+
self.setGeometry(2500, 300, 400, 200)
|
| 102 |
+
|
| 103 |
+
self.loadModelButton = QPushButton('Upload Model', self)
|
| 104 |
+
self.loadModelButton.clicked.connect(self.loadModel)
|
| 105 |
+
|
| 106 |
+
self.loadImageButton = QPushButton('Upload Image', self)
|
| 107 |
+
self.loadImageButton.clicked.connect(self.loadImage)
|
| 108 |
+
|
| 109 |
+
self.predictButton = QPushButton('Make a Prediction', self)
|
| 110 |
+
self.predictButton.clicked.connect(self.predict)
|
| 111 |
+
self.predictButton.setEnabled(False)
|
| 112 |
+
|
| 113 |
+
self.resultLabel = QLabel('', self)
|
| 114 |
+
self.resultLabel.setAlignment(Qt.AlignCenter)
|
| 115 |
+
|
| 116 |
+
self.imageLabel = QLabel('', self)
|
| 117 |
+
self.imageLabel.setAlignment(Qt.AlignCenter)
|
| 118 |
+
|
| 119 |
+
layout = QVBoxLayout()
|
| 120 |
+
layout.addWidget(self.loadModelButton)
|
| 121 |
+
layout.addWidget(self.loadImageButton)
|
| 122 |
+
layout.addWidget(self.imageLabel)
|
| 123 |
+
layout.addWidget(self.predictButton)
|
| 124 |
+
layout.addWidget(self.resultLabel)
|
| 125 |
+
|
| 126 |
+
self.setLayout(layout)
|
| 127 |
+
|
| 128 |
+
def loadModel(self):
|
| 129 |
+
options = QFileDialog.Options()
|
| 130 |
+
fileName, _ = QFileDialog.getOpenFileName(self, "Choose Model Path", "",
|
| 131 |
+
"PyTorch Model Files (*.pt);;All Files (*)", options=options)
|
| 132 |
+
if fileName:
|
| 133 |
+
self.model = models.resnet18(pretrained=False)
|
| 134 |
+
num_ftrs = self.model.fc.in_features
|
| 135 |
+
self.model.fc = nn.Linear(num_ftrs, 4)
|
| 136 |
+
self.model.load_state_dict(torch.load(fileName, map_location=device))
|
| 137 |
+
self.model = self.model.to(device)
|
| 138 |
+
self.model.eval()
|
| 139 |
+
self.predictButton.setEnabled(True)
|
| 140 |
+
QMessageBox.information(self, "Model Uploaded", "Model successfully uploaded!")
|
| 141 |
+
|
| 142 |
+
def loadImage(self):
|
| 143 |
+
options = QFileDialog.Options()
|
| 144 |
+
fileName, _ = QFileDialog.getOpenFileName(self, "Choose Image File", "",
|
| 145 |
+
"Image Files (*.jpg *.jpeg *.png);;All Files (*)", options=options)
|
| 146 |
+
if fileName:
|
| 147 |
+
self.image_path = fileName
|
| 148 |
+
pixmap = QPixmap(self.image_path)
|
| 149 |
+
self.imageLabel.setPixmap(pixmap.scaled(224, 224, Qt.KeepAspectRatio))
|
| 150 |
+
|
| 151 |
+
def predict(self):
|
| 152 |
+
if self.model and self.image_path:
|
| 153 |
+
prediction, confidence = self.predictImage(self.image_path, self.model, transform)
|
| 154 |
+
self.resultLabel.setText(f'Prediction: {class_names[prediction]} (%{confidence * 100:.2f})')
|
| 155 |
+
else:
|
| 156 |
+
QMessageBox.warning(self, "Missing Information", "Model and picture must be uploaded.")
|
| 157 |
+
|
| 158 |
+
def predictImage(self, image_path, model, transform):
|
| 159 |
+
image = Image.open(image_path).convert('RGB')
|
| 160 |
+
image = transform(image).unsqueeze(0).to(device)
|
| 161 |
+
model.eval()
|
| 162 |
+
with torch.no_grad():
|
| 163 |
+
outputs = model(image)
|
| 164 |
+
probs = torch.nn.functional.softmax(outputs, dim=1)
|
| 165 |
+
_, preds = torch.max(outputs, 1)
|
| 166 |
+
return preds.item(), probs[0][preds.item()].item()
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
if __name__ == '__main__':
|
| 170 |
+
app = QApplication(sys.argv)
|
| 171 |
+
ex = DementiaApp()
|
| 172 |
+
ex.show()
|
| 173 |
+
sys.exit(app.exec_())
|
| 174 |
+
```
|
| 175 |
+
|
| 176 |
+
# Python Sürümü / Python Version
|
| 177 |
+
|
| 178 |
+
### 3.9 <=> 3.13
|
| 179 |
+
|
| 180 |
+
# Modüller / Modules
|
| 181 |
+
|
| 182 |
+
```bash
|
| 183 |
+
matplotlib==3.8.0
|
| 184 |
+
Pillow==10.0.1
|
| 185 |
+
torch==2.3.1
|
| 186 |
+
torchsummary==1.5.1
|
| 187 |
+
torchvision==0.18.1
|
| 188 |
+
```
|
Main Models/Vbai-1.2 Dementia/Vbai-1.2 Dementia.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e97a1a006ab50b98a641b44a9a3d36eaafc97648bd07dad01ad3b1b8b8c08980
|
| 3 |
+
size 44792618
|