Upload adapter_lora_quickstarts_qwen3_14b.ipynb
Browse files
adapter_lora_quickstarts_qwen3_14b.ipynb
ADDED
|
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# Qwen3-14B LoRA Adapter — Colab Quickstart\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"This notebook shows how to load the `unsloth/Qwen3-14B-unsloth-bnb-4bit` base model, attach the fine-tuned LoRA adapter (P/U classifier), and run classification on a Google Colab T4 runtime.\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"**Workflow overview**\n",
|
| 12 |
+
"1. Install a compatible software stack (NumPy 1.x + SciPy 1.11) together with Unsloth, Transformers, BitsAndBytes, and PEFT.\n",
|
| 13 |
+
"2. Restart the runtime once (Colab quirk), then re-run the install cell.\n",
|
| 14 |
+
"3. Configure the Hugging Face adapter repo name.\n",
|
| 15 |
+
"4. Load base model + attach adapter.\n",
|
| 16 |
+
"5. Run classification with the same prompt used in evaluation, including a lightweight thinking prefill.\n"
|
| 17 |
+
]
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"cell_type": "code",
|
| 21 |
+
"execution_count": null,
|
| 22 |
+
"metadata": {
|
| 23 |
+
"id": "install"
|
| 24 |
+
},
|
| 25 |
+
"outputs": [],
|
| 26 |
+
"source": [
|
| 27 |
+
"# Step 1 – Install compatible dependencies.\n",
|
| 28 |
+
"!pip install -q --upgrade --force-reinstall --no-cache-dir \\\n",
|
| 29 |
+
" \"numpy==1.26.4\" \"scipy<1.12\" unsloth unsloth_zoo transformers accelerate bitsandbytes peft huggingface_hub\n",
|
| 30 |
+
"print(\"Installation complete. Restart the runtime (Runtime > Restart runtime) and run this cell ONCE MORE before moving on.\")\n"
|
| 31 |
+
]
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"cell_type": "markdown",
|
| 35 |
+
"metadata": {},
|
| 36 |
+
"source": [
|
| 37 |
+
"## Step 2 – Configure paths\n",
|
| 38 |
+
"Set `ADAPTER_REPO` to the Hugging Face repo where you uploaded the LoRA adapter files (it must contain `adapter_config.json`, `adapter_model.safetensors`, `chat_template.jinja`, tokenizer files, etc.).\n"
|
| 39 |
+
]
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"cell_type": "code",
|
| 43 |
+
"execution_count": null,
|
| 44 |
+
"metadata": {
|
| 45 |
+
"id": "config"
|
| 46 |
+
},
|
| 47 |
+
"outputs": [],
|
| 48 |
+
"source": [
|
| 49 |
+
"BASE_MODEL = 'unsloth/Qwen3-14B-unsloth-bnb-4bit'\n",
|
| 50 |
+
"ADAPTER_REPO = 'evenfarther/Qwen3-14b-chemical-synthesis-adapter'\n",
|
| 51 |
+
"MAX_SEQ_LEN = 180 # matches evaluation context length\n",
|
| 52 |
+
"SYSTEM_PROMPT = 'You are a helpful assistant for P/U classification of synthesizability.'\n",
|
| 53 |
+
"PROMPT_TEMPLATE = (\n",
|
| 54 |
+
" 'As chief synthesis scientist, judge {compound} critically. ' +\n",
|
| 55 |
+
" 'Avoid bias. P=synthesizable, U=not:'\n",
|
| 56 |
+
")\n",
|
| 57 |
+
"DEVICE_MAP = {'': 0} # keep everything on GPU 0\n",
|
| 58 |
+
"MAX_MEMORY = {0: '14GiB'} # Colab T4 budget\n"
|
| 59 |
+
]
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"cell_type": "markdown",
|
| 63 |
+
"metadata": {},
|
| 64 |
+
"source": [
|
| 65 |
+
"## Step 3 – Load base model + adapter\n",
|
| 66 |
+
"This places the MXFP4 base model and the LoRA adapter on the GPU. If you see a device-map error, make sure the runtime is a single T4 GPU session and that no other large models are loaded.\n"
|
| 67 |
+
]
|
| 68 |
+
},
|
| 69 |
+
{
|
| 70 |
+
"cell_type": "code",
|
| 71 |
+
"execution_count": null,
|
| 72 |
+
"metadata": {
|
| 73 |
+
"id": "load"
|
| 74 |
+
},
|
| 75 |
+
"outputs": [],
|
| 76 |
+
"source": [
|
| 77 |
+
"import torch\n",
|
| 78 |
+
"from unsloth import FastLanguageModel\n",
|
| 79 |
+
"from peft import PeftModel\n",
|
| 80 |
+
"\n",
|
| 81 |
+
"torch.cuda.empty_cache()\n",
|
| 82 |
+
"model, tokenizer = FastLanguageModel.from_pretrained(\n",
|
| 83 |
+
" model_name=BASE_MODEL,\n",
|
| 84 |
+
" max_seq_length=MAX_SEQ_LEN,\n",
|
| 85 |
+
" dtype=None,\n",
|
| 86 |
+
" load_in_4bit=True,\n",
|
| 87 |
+
" device_map=DEVICE_MAP,\n",
|
| 88 |
+
" max_memory=MAX_MEMORY,\n",
|
| 89 |
+
" attn_implementation='eager',\n",
|
| 90 |
+
")\n",
|
| 91 |
+
"model = PeftModel.from_pretrained(\n",
|
| 92 |
+
" model,\n",
|
| 93 |
+
" ADAPTER_REPO,\n",
|
| 94 |
+
" device_map=DEVICE_MAP,\n",
|
| 95 |
+
")\n",
|
| 96 |
+
"FastLanguageModel.for_inference(model)\n",
|
| 97 |
+
"\n",
|
| 98 |
+
"# Tokenizer safety\n",
|
| 99 |
+
"if tokenizer.pad_token is None:\n",
|
| 100 |
+
" tokenizer.pad_token = tokenizer.eos_token\n",
|
| 101 |
+
" tokenizer.pad_token_id = tokenizer.eos_token_id\n",
|
| 102 |
+
"\n",
|
| 103 |
+
"vram_gb = torch.cuda.memory_allocated() / 1e9\n",
|
| 104 |
+
"print(f'VRAM usage after load: {vram_gb:.2f} GB')\n"
|
| 105 |
+
]
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"cell_type": "markdown",
|
| 109 |
+
"metadata": {},
|
| 110 |
+
"source": [
|
| 111 |
+
"## Step 4 – (Optional) Use the adapter's chat template\n",
|
| 112 |
+
"The evaluation uses a checkpoint-provided chat template and pre-fills a lightweight thinking block after the assistant start. If your adapter repo contains a `chat_template.jinja`, load it into the tokenizer for consistent formatting.\n"
|
| 113 |
+
]
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"cell_type": "code",
|
| 117 |
+
"execution_count": null,
|
| 118 |
+
"metadata": {
|
| 119 |
+
"id": "template"
|
| 120 |
+
},
|
| 121 |
+
"outputs": [],
|
| 122 |
+
"source": [
|
| 123 |
+
"from huggingface_hub import hf_hub_download\n",
|
| 124 |
+
"\n",
|
| 125 |
+
"try:\n",
|
| 126 |
+
" tmpl_path = hf_hub_download(repo_id=ADAPTER_REPO, filename='chat_template.jinja')\n",
|
| 127 |
+
" with open(tmpl_path, 'r', encoding='utf-8') as f:\n",
|
| 128 |
+
" tokenizer.chat_template = f.read()\n",
|
| 129 |
+
" print('Loaded chat_template.jinja from adapter repo.')\n",
|
| 130 |
+
"except Exception as e:\n",
|
| 131 |
+
" print('No chat_template.jinja found in adapter repo (this is OK). Using tokenizer default.')\n"
|
| 132 |
+
]
|
| 133 |
+
},
|
| 134 |
+
{
|
| 135 |
+
"cell_type": "markdown",
|
| 136 |
+
"metadata": {},
|
| 137 |
+
"source": [
|
| 138 |
+
"## Step 5 – Classification helper\n",
|
| 139 |
+
"The helper below mirrors the training/evaluation prompt. It also inserts a minimal thinking prefill so the model conditions identically to evaluation.\n"
|
| 140 |
+
]
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"cell_type": "code",
|
| 144 |
+
"execution_count": null,
|
| 145 |
+
"metadata": {
|
| 146 |
+
"id": "helper"
|
| 147 |
+
},
|
| 148 |
+
"outputs": [],
|
| 149 |
+
"source": [
|
| 150 |
+
"THINK_STUB = '<think>\\n\\n</think>\\n\\n'\n",
|
| 151 |
+
"\n",
|
| 152 |
+
"def classify(composition: str) -> str:\n",
|
| 153 |
+
" \"\"\"Return 'P' or 'U' for the given composition string.\"\"\"\n",
|
| 154 |
+
" user_prompt = PROMPT_TEMPLATE.format(compound=composition)\n",
|
| 155 |
+
" messages = [\n",
|
| 156 |
+
" {\"role\": \"system\", \"content\": SYSTEM_PROMPT},\n",
|
| 157 |
+
" {\"role\": \"user\", \"content\": user_prompt},\n",
|
| 158 |
+
" ]\n",
|
| 159 |
+
"\n",
|
| 160 |
+
" # Preferred: pass enable_thinking=False so the template injects the stub.\n",
|
| 161 |
+
" try:\n",
|
| 162 |
+
" inputs = tokenizer.apply_chat_template(\n",
|
| 163 |
+
" messages,\n",
|
| 164 |
+
" return_tensors='pt',\n",
|
| 165 |
+
" add_generation_prompt=True,\n",
|
| 166 |
+
" enable_thinking=False,\n",
|
| 167 |
+
" ).to(model.device)\n",
|
| 168 |
+
" used_stub = True\n",
|
| 169 |
+
" except TypeError:\n",
|
| 170 |
+
" # Fallback: manual stub append if template kwargs aren't supported.\n",
|
| 171 |
+
" prompt_text = tokenizer.apply_chat_template(\n",
|
| 172 |
+
" messages,\n",
|
| 173 |
+
" return_tensors=None,\n",
|
| 174 |
+
" add_generation_prompt=True,\n",
|
| 175 |
+
" )\n",
|
| 176 |
+
" if not prompt_text.endswith(THINK_STUB):\n",
|
| 177 |
+
" prompt_text = prompt_text + THINK_STUB\n",
|
| 178 |
+
" inputs = tokenizer(prompt_text, return_tensors='pt').to(model.device)[\"input_ids\"]\n",
|
| 179 |
+
" used_stub = True\n",
|
| 180 |
+
"\n",
|
| 181 |
+
" with torch.no_grad():\n",
|
| 182 |
+
" outputs = model.generate(\n",
|
| 183 |
+
" inputs,\n",
|
| 184 |
+
" max_new_tokens=1,\n",
|
| 185 |
+
" temperature=0.0,\n",
|
| 186 |
+
" do_sample=False,\n",
|
| 187 |
+
" pad_token_id=tokenizer.pad_token_id,\n",
|
| 188 |
+
" eos_token_id=tokenizer.eos_token_id,\n",
|
| 189 |
+
" )\n",
|
| 190 |
+
" gen_ids = outputs[0][inputs.shape[1]:] # newly generated\n",
|
| 191 |
+
" gen_text = tokenizer.decode(gen_ids, skip_special_tokens=True)\n",
|
| 192 |
+
" # Extract the first non-whitespace char and map to P/U if present.\n",
|
| 193 |
+
" gen_text = gen_text.strip()\n",
|
| 194 |
+
" return gen_text[:1] if gen_text[:1] in ('P', 'U') else gen_text\n"
|
| 195 |
+
]
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"cell_type": "markdown",
|
| 199 |
+
"metadata": {},
|
| 200 |
+
"source": [
|
| 201 |
+
"## Step 6 – Run a few examples\n"
|
| 202 |
+
]
|
| 203 |
+
},
|
| 204 |
+
{
|
| 205 |
+
"cell_type": "code",
|
| 206 |
+
"execution_count": null,
|
| 207 |
+
"metadata": {
|
| 208 |
+
"id": "demo"
|
| 209 |
+
},
|
| 210 |
+
"outputs": [],
|
| 211 |
+
"source": [
|
| 212 |
+
"examples = [\n",
|
| 213 |
+
" 'Ta1Tl1Cr1Pt1',\n",
|
| 214 |
+
" 'Rh1Cl3',\n",
|
| 215 |
+
" 'Co2Bi1Ru1',\n",
|
| 216 |
+
" 'Co15Mo55Fe10Ni10Cu10',\n",
|
| 217 |
+
"]\n",
|
| 218 |
+
"for comp in examples:\n",
|
| 219 |
+
" pred = classify(comp)\n",
|
| 220 |
+
" output = pred if pred else '<empty>'\n",
|
| 221 |
+
" print(f'{comp}: {output}')\n"
|
| 222 |
+
]
|
| 223 |
+
},
|
| 224 |
+
{
|
| 225 |
+
"cell_type": "markdown",
|
| 226 |
+
"metadata": {},
|
| 227 |
+
"source": [
|
| 228 |
+
"### Notes\n",
|
| 229 |
+
"- VRAM: Colab T4 (≈15 GB) is typically sufficient for 4-bit base + adapter.\n",
|
| 230 |
+
"- If you see memory errors, reduce `MAX_SEQ_LEN` (e.g., 128) or clear other sessions.\n",
|
| 231 |
+
"- The adapter targets chemical synthesizability classification; generalization outside this domain is not guaranteed.\n"
|
| 232 |
+
]
|
| 233 |
+
}
|
| 234 |
+
],
|
| 235 |
+
"metadata": {
|
| 236 |
+
"accelerator": "GPU",
|
| 237 |
+
"colab": {
|
| 238 |
+
"name": "Qwen3-14B LoRA Adapter — Colab Quickstart",
|
| 239 |
+
"provenance": []
|
| 240 |
+
},
|
| 241 |
+
"kernelspec": {
|
| 242 |
+
"display_name": "Python 3",
|
| 243 |
+
"name": "python3"
|
| 244 |
+
},
|
| 245 |
+
"language_info": {
|
| 246 |
+
"name": "python"
|
| 247 |
+
}
|
| 248 |
+
},
|
| 249 |
+
"nbformat": 4,
|
| 250 |
+
"nbformat_minor": 5
|
| 251 |
+
}
|