Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -15,7 +15,7 @@ model-index:
|
|
| 15 |
type: doom_health_gathering_supreme
|
| 16 |
metrics:
|
| 17 |
- type: mean_reward
|
| 18 |
-
value:
|
| 19 |
name: mean_reward
|
| 20 |
verified: false
|
| 21 |
---
|
|
@@ -30,7 +30,7 @@ Documentation for how to use Sample-Factory can be found at https://www.samplefa
|
|
| 30 |
|
| 31 |
After installing Sample-Factory, download the model with:
|
| 32 |
```
|
| 33 |
-
python -m sample_factory.huggingface.load_from_hub -r eolang/
|
| 34 |
```
|
| 35 |
|
| 36 |
|
|
@@ -38,7 +38,7 @@ python -m sample_factory.huggingface.load_from_hub -r eolang/rl_course_vizdoom_h
|
|
| 38 |
|
| 39 |
To run the model after download, use the `enjoy` script corresponding to this environment:
|
| 40 |
```
|
| 41 |
-
python -m .workspace.stable-diffusion-webui.venv.lib.python3.10.site-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=
|
| 42 |
```
|
| 43 |
|
| 44 |
|
|
@@ -49,7 +49,7 @@ See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
|
|
| 49 |
|
| 50 |
To continue training with this model, use the `train` script corresponding to this environment:
|
| 51 |
```
|
| 52 |
-
python -m .workspace.stable-diffusion-webui.venv.lib.python3.10.site-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=
|
| 53 |
```
|
| 54 |
|
| 55 |
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
|
|
|
| 15 |
type: doom_health_gathering_supreme
|
| 16 |
metrics:
|
| 17 |
- type: mean_reward
|
| 18 |
+
value: 18.61 +/- 4.52
|
| 19 |
name: mean_reward
|
| 20 |
verified: false
|
| 21 |
---
|
|
|
|
| 30 |
|
| 31 |
After installing Sample-Factory, download the model with:
|
| 32 |
```
|
| 33 |
+
python -m sample_factory.huggingface.load_from_hub -r eolang/DRL-vizdoome_health_gathering_supreme
|
| 34 |
```
|
| 35 |
|
| 36 |
|
|
|
|
| 38 |
|
| 39 |
To run the model after download, use the `enjoy` script corresponding to this environment:
|
| 40 |
```
|
| 41 |
+
python -m .workspace.stable-diffusion-webui.venv.lib.python3.10.site-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=DRL-vizdoome_health_gathering_supreme
|
| 42 |
```
|
| 43 |
|
| 44 |
|
|
|
|
| 49 |
|
| 50 |
To continue training with this model, use the `train` script corresponding to this environment:
|
| 51 |
```
|
| 52 |
+
python -m .workspace.stable-diffusion-webui.venv.lib.python3.10.site-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=DRL-vizdoome_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
|
| 53 |
```
|
| 54 |
|
| 55 |
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|