| { | |
| "alpha_pattern": {}, | |
| "auto_mapping": null, | |
| "base_model_name_or_path": "roberta-base", | |
| "bias": "none", | |
| "corda_config": null, | |
| "eva_config": null, | |
| "exclude_modules": null, | |
| "fan_in_fan_out": false, | |
| "inference_mode": true, | |
| "init_lora_weights": true, | |
| "layer_replication": null, | |
| "layers_pattern": null, | |
| "layers_to_transform": null, | |
| "loftq_config": {}, | |
| "lora_alpha": 16, | |
| "lora_bias": false, | |
| "lora_dropout": 0.1, | |
| "megatron_config": null, | |
| "megatron_core": "megatron.core", | |
| "modules_to_save": [ | |
| "classifier", | |
| "score" | |
| ], | |
| "peft_type": "LORA", | |
| "qalora_group_size": 16, | |
| "r": 8, | |
| "rank_pattern": {}, | |
| "revision": null, | |
| "target_modules": "roberta\\.encoder\\.layer\\.11\\.attention\\.self\\.value|roberta\\.encoder\\.layer\\.10\\.attention\\.self\\.value|roberta\\.encoder\\.layer\\.11\\.intermediate\\.dense|roberta\\.encoder\\.layer\\.10\\.intermediate\\.dense|roberta\\.encoder\\.layer\\.9\\.attention\\.self\\.value|roberta\\.encoder\\.layer\\.11\\.output\\.dense|roberta\\.encoder\\.layer\\.8\\.attention\\.self\\.value|roberta\\.encoder\\.layer\\.10\\.output\\.dense|roberta\\.encoder\\.layer\\.6\\.attention\\.self\\.value|roberta\\.encoder\\.layer\\.7\\.attention\\.self\\.value|roberta\\.encoder\\.layer\\.9\\.intermediate\\.dense|roberta\\.encoder\\.layer\\.5\\.attention\\.self\\.value|roberta\\.encoder\\.layer\\.9\\.output\\.dense|roberta\\.encoder\\.layer\\.3\\.attention\\.self\\.value|roberta\\.encoder\\.layer\\.2\\.attention\\.self\\.value|roberta\\.encoder\\.layer\\.8\\.intermediate\\.dense|roberta\\.encoder\\.layer\\.4\\.attention\\.self\\.value|roberta\\.encoder\\.layer\\.8\\.output\\.dense|roberta\\.encoder\\.layer\\.7\\.intermediate\\.dense|roberta\\.encoder\\.layer\\.6\\.intermediate\\.dense|roberta\\.encoder\\.layer\\.5\\.intermediate\\.dense|roberta\\.encoder\\.layer\\.2\\.intermediate\\.dense|roberta\\.encoder\\.layer\\.1\\.attention\\.self\\.value|roberta\\.encoder\\.layer\\.11\\.attention\\.output\\.dense|roberta\\.encoder\\.layer\\.4\\.intermediate\\.dense|roberta\\.encoder\\.layer\\.3\\.intermediate\\.dense|roberta\\.encoder\\.layer\\.7\\.output\\.dense|roberta\\.encoder\\.layer\\.10\\.attention\\.output\\.dense", | |
| "task_type": "SEQ_CLS", | |
| "trainable_token_indices": null, | |
| "use_dora": false, | |
| "use_qalora": false, | |
| "use_rslora": false | |
| } |