Update README.md
Browse files
README.md
CHANGED
|
@@ -1,356 +1,161 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
tags:
|
| 3 |
-
- sentence-transformers
|
| 4 |
- cross-encoder
|
| 5 |
-
-
|
| 6 |
-
-
|
| 7 |
-
-
|
| 8 |
-
-
|
| 9 |
-
pipeline_tag: text-ranking
|
| 10 |
-
library_name: sentence-transformers
|
| 11 |
-
metrics:
|
| 12 |
-
- pearson
|
| 13 |
-
- spearman
|
| 14 |
model-index:
|
| 15 |
-
- name: CrossEncoder
|
| 16 |
results:
|
| 17 |
- task:
|
| 18 |
-
type:
|
| 19 |
-
name:
|
| 20 |
dataset:
|
| 21 |
-
name: sts
|
| 22 |
-
type: sts-
|
| 23 |
metrics:
|
| 24 |
-
- type:
|
| 25 |
value: 0.8763053568934394
|
| 26 |
-
name: Pearson
|
| 27 |
-
- type:
|
| 28 |
value: 0.8688596158541986
|
| 29 |
-
name: Spearman
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
---
|
| 31 |
|
| 32 |
-
#
|
| 33 |
-
|
| 34 |
-
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model trained using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
|
| 35 |
-
|
| 36 |
-
## Model Details
|
| 37 |
|
| 38 |
-
|
| 39 |
-
-
|
| 40 |
-
|
| 41 |
-
- **Maximum Sequence Length:** 512 tokens
|
| 42 |
-
- **Number of Output Labels:** 1 label
|
| 43 |
-
<!-- - **Training Dataset:** Unknown -->
|
| 44 |
-
<!-- - **Language:** Unknown -->
|
| 45 |
-
<!-- - **License:** Unknown -->
|
| 46 |
|
| 47 |
-
|
|
|
|
|
|
|
| 48 |
|
| 49 |
-
|
| 50 |
-
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
|
| 51 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 52 |
-
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
|
| 53 |
-
|
| 54 |
-
## Usage
|
| 55 |
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
|
| 59 |
|
| 60 |
-
|
| 61 |
-
pip install -U sentence-transformers
|
| 62 |
-
```
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
# Download from the 🤗 Hub
|
| 69 |
-
model = CrossEncoder("cross_encoder_model_id")
|
| 70 |
-
# Get scores for pairs of texts
|
| 71 |
-
pairs = [
|
| 72 |
-
['The little boy is singing and playing the guitar.', 'A baby is playing a guitar.'],
|
| 73 |
-
['executive director of the arms control association in washington daryl kimball stated that-- the iaea report is 1 in a series of bad signs. ', 'executive director of the arms control association in washington daryl kimball stated the israeli document could affect the debate over india.'],
|
| 74 |
-
['it did not say if the men had been hanged in prison. ', 'dozens of such criminals have been hanged in public.'],
|
| 75 |
-
['Child sliding in the snow.', 'Man sleeping on the street.'],
|
| 76 |
-
["Your confusion doesn't make me a liar.", "Then your confusion doesn't make me a liar either."],
|
| 77 |
-
]
|
| 78 |
-
scores = model.predict(pairs)
|
| 79 |
-
print(scores.shape)
|
| 80 |
-
# (5,)
|
| 81 |
-
|
| 82 |
-
# Or rank different texts based on similarity to a single text
|
| 83 |
-
ranks = model.rank(
|
| 84 |
-
'The little boy is singing and playing the guitar.',
|
| 85 |
-
[
|
| 86 |
-
'A baby is playing a guitar.',
|
| 87 |
-
'executive director of the arms control association in washington daryl kimball stated the israeli document could affect the debate over india.',
|
| 88 |
-
'dozens of such criminals have been hanged in public.',
|
| 89 |
-
'Man sleeping on the street.',
|
| 90 |
-
"Then your confusion doesn't make me a liar either.",
|
| 91 |
-
]
|
| 92 |
-
)
|
| 93 |
-
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
|
| 94 |
-
```
|
| 95 |
|
| 96 |
-
|
| 97 |
-
### Direct Usage (Transformers)
|
| 98 |
|
| 99 |
-
|
| 100 |
|
| 101 |
-
|
| 102 |
-
-->
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
|
| 107 |
-
|
|
|
|
| 108 |
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
|
| 117 |
-
|
| 118 |
-
-->
|
| 119 |
|
| 120 |
-
##
|
| 121 |
|
| 122 |
-
###
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
-
|
|
|
|
| 125 |
|
| 126 |
-
|
| 127 |
-
|
|
|
|
|
|
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|:-------------|:-----------|
|
| 131 |
-
| pearson | 0.8763 |
|
| 132 |
-
| **spearman** | **0.8689** |
|
| 133 |
|
| 134 |
-
|
| 135 |
-
## Bias, Risks and Limitations
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
|
|
|
|
|
|
| 139 |
|
| 140 |
-
|
| 141 |
-
### Recommendations
|
| 142 |
|
| 143 |
-
|
| 144 |
-
-->
|
| 145 |
|
| 146 |
-
|
| 147 |
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
#### Unnamed Dataset
|
| 151 |
-
|
| 152 |
-
* Size: 5,749 training samples
|
| 153 |
-
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
| 154 |
-
* Approximate statistics based on the first 1000 samples:
|
| 155 |
-
| | sentence_0 | sentence_1 | label |
|
| 156 |
-
|:--------|:------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
| 157 |
-
| type | string | string | float |
|
| 158 |
-
| details | <ul><li>min: 17 characters</li><li>mean: 56.58 characters</li><li>max: 234 characters</li></ul> | <ul><li>min: 16 characters</li><li>mean: 57.3 characters</li><li>max: 235 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.53</li><li>max: 1.0</li></ul> |
|
| 159 |
-
* Samples:
|
| 160 |
-
| sentence_0 | sentence_1 | label |
|
| 161 |
-
|:----------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
|
| 162 |
-
| <code>The little boy is singing and playing the guitar.</code> | <code>A baby is playing a guitar.</code> | <code>0.56</code> |
|
| 163 |
-
| <code>executive director of the arms control association in washington daryl kimball stated that-- the iaea report is 1 in a series of bad signs. </code> | <code>executive director of the arms control association in washington daryl kimball stated the israeli document could affect the debate over india.</code> | <code>0.72</code> |
|
| 164 |
-
| <code>it did not say if the men had been hanged in prison. </code> | <code>dozens of such criminals have been hanged in public.</code> | <code>0.36</code> |
|
| 165 |
-
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
|
| 166 |
-
```json
|
| 167 |
-
{
|
| 168 |
-
"activation_fn": "torch.nn.modules.linear.Identity",
|
| 169 |
-
"pos_weight": null
|
| 170 |
-
}
|
| 171 |
-
```
|
| 172 |
-
|
| 173 |
-
### Training Hyperparameters
|
| 174 |
-
#### Non-Default Hyperparameters
|
| 175 |
-
|
| 176 |
-
- `eval_strategy`: steps
|
| 177 |
-
- `per_device_train_batch_size`: 96
|
| 178 |
-
- `per_device_eval_batch_size`: 96
|
| 179 |
-
- `fp16`: True
|
| 180 |
-
|
| 181 |
-
#### All Hyperparameters
|
| 182 |
-
<details><summary>Click to expand</summary>
|
| 183 |
-
|
| 184 |
-
- `overwrite_output_dir`: False
|
| 185 |
-
- `do_predict`: False
|
| 186 |
-
- `eval_strategy`: steps
|
| 187 |
-
- `prediction_loss_only`: True
|
| 188 |
-
- `per_device_train_batch_size`: 96
|
| 189 |
-
- `per_device_eval_batch_size`: 96
|
| 190 |
-
- `per_gpu_train_batch_size`: None
|
| 191 |
-
- `per_gpu_eval_batch_size`: None
|
| 192 |
-
- `gradient_accumulation_steps`: 1
|
| 193 |
-
- `eval_accumulation_steps`: None
|
| 194 |
-
- `torch_empty_cache_steps`: None
|
| 195 |
-
- `learning_rate`: 5e-05
|
| 196 |
-
- `weight_decay`: 0.0
|
| 197 |
-
- `adam_beta1`: 0.9
|
| 198 |
-
- `adam_beta2`: 0.999
|
| 199 |
-
- `adam_epsilon`: 1e-08
|
| 200 |
-
- `max_grad_norm`: 1
|
| 201 |
-
- `num_train_epochs`: 3
|
| 202 |
-
- `max_steps`: -1
|
| 203 |
-
- `lr_scheduler_type`: linear
|
| 204 |
-
- `lr_scheduler_kwargs`: {}
|
| 205 |
-
- `warmup_ratio`: 0.0
|
| 206 |
-
- `warmup_steps`: 0
|
| 207 |
-
- `log_level`: passive
|
| 208 |
-
- `log_level_replica`: warning
|
| 209 |
-
- `log_on_each_node`: True
|
| 210 |
-
- `logging_nan_inf_filter`: True
|
| 211 |
-
- `save_safetensors`: True
|
| 212 |
-
- `save_on_each_node`: False
|
| 213 |
-
- `save_only_model`: False
|
| 214 |
-
- `restore_callback_states_from_checkpoint`: False
|
| 215 |
-
- `no_cuda`: False
|
| 216 |
-
- `use_cpu`: False
|
| 217 |
-
- `use_mps_device`: False
|
| 218 |
-
- `seed`: 42
|
| 219 |
-
- `data_seed`: None
|
| 220 |
-
- `jit_mode_eval`: False
|
| 221 |
-
- `use_ipex`: False
|
| 222 |
-
- `bf16`: False
|
| 223 |
-
- `fp16`: True
|
| 224 |
-
- `fp16_opt_level`: O1
|
| 225 |
-
- `half_precision_backend`: auto
|
| 226 |
-
- `bf16_full_eval`: False
|
| 227 |
-
- `fp16_full_eval`: False
|
| 228 |
-
- `tf32`: None
|
| 229 |
-
- `local_rank`: 0
|
| 230 |
-
- `ddp_backend`: None
|
| 231 |
-
- `tpu_num_cores`: None
|
| 232 |
-
- `tpu_metrics_debug`: False
|
| 233 |
-
- `debug`: []
|
| 234 |
-
- `dataloader_drop_last`: False
|
| 235 |
-
- `dataloader_num_workers`: 0
|
| 236 |
-
- `dataloader_prefetch_factor`: None
|
| 237 |
-
- `past_index`: -1
|
| 238 |
-
- `disable_tqdm`: False
|
| 239 |
-
- `remove_unused_columns`: True
|
| 240 |
-
- `label_names`: None
|
| 241 |
-
- `load_best_model_at_end`: False
|
| 242 |
-
- `ignore_data_skip`: False
|
| 243 |
-
- `fsdp`: []
|
| 244 |
-
- `fsdp_min_num_params`: 0
|
| 245 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 246 |
-
- `tp_size`: 0
|
| 247 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 248 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 249 |
-
- `deepspeed`: None
|
| 250 |
-
- `label_smoothing_factor`: 0.0
|
| 251 |
-
- `optim`: adamw_torch
|
| 252 |
-
- `optim_args`: None
|
| 253 |
-
- `adafactor`: False
|
| 254 |
-
- `group_by_length`: False
|
| 255 |
-
- `length_column_name`: length
|
| 256 |
-
- `ddp_find_unused_parameters`: None
|
| 257 |
-
- `ddp_bucket_cap_mb`: None
|
| 258 |
-
- `ddp_broadcast_buffers`: False
|
| 259 |
-
- `dataloader_pin_memory`: True
|
| 260 |
-
- `dataloader_persistent_workers`: False
|
| 261 |
-
- `skip_memory_metrics`: True
|
| 262 |
-
- `use_legacy_prediction_loop`: False
|
| 263 |
-
- `push_to_hub`: False
|
| 264 |
-
- `resume_from_checkpoint`: None
|
| 265 |
-
- `hub_model_id`: None
|
| 266 |
-
- `hub_strategy`: every_save
|
| 267 |
-
- `hub_private_repo`: None
|
| 268 |
-
- `hub_always_push`: False
|
| 269 |
-
- `gradient_checkpointing`: False
|
| 270 |
-
- `gradient_checkpointing_kwargs`: None
|
| 271 |
-
- `include_inputs_for_metrics`: False
|
| 272 |
-
- `include_for_metrics`: []
|
| 273 |
-
- `eval_do_concat_batches`: True
|
| 274 |
-
- `fp16_backend`: auto
|
| 275 |
-
- `push_to_hub_model_id`: None
|
| 276 |
-
- `push_to_hub_organization`: None
|
| 277 |
-
- `mp_parameters`:
|
| 278 |
-
- `auto_find_batch_size`: False
|
| 279 |
-
- `full_determinism`: False
|
| 280 |
-
- `torchdynamo`: None
|
| 281 |
-
- `ray_scope`: last
|
| 282 |
-
- `ddp_timeout`: 1800
|
| 283 |
-
- `torch_compile`: False
|
| 284 |
-
- `torch_compile_backend`: None
|
| 285 |
-
- `torch_compile_mode`: None
|
| 286 |
-
- `include_tokens_per_second`: False
|
| 287 |
-
- `include_num_input_tokens_seen`: False
|
| 288 |
-
- `neftune_noise_alpha`: None
|
| 289 |
-
- `optim_target_modules`: None
|
| 290 |
-
- `batch_eval_metrics`: False
|
| 291 |
-
- `eval_on_start`: False
|
| 292 |
-
- `use_liger_kernel`: False
|
| 293 |
-
- `eval_use_gather_object`: False
|
| 294 |
-
- `average_tokens_across_devices`: False
|
| 295 |
-
- `prompts`: None
|
| 296 |
-
- `batch_sampler`: batch_sampler
|
| 297 |
-
- `multi_dataset_batch_sampler`: proportional
|
| 298 |
-
- `router_mapping`: {}
|
| 299 |
-
- `learning_rate_mapping`: {}
|
| 300 |
-
|
| 301 |
-
</details>
|
| 302 |
-
|
| 303 |
-
### Training Logs
|
| 304 |
-
| Epoch | Step | sts-validation_spearman |
|
| 305 |
-
|:------:|:----:|:-----------------------:|
|
| 306 |
-
| 0.3333 | 20 | 0.8638 |
|
| 307 |
-
| 0.6667 | 40 | 0.8646 |
|
| 308 |
-
| 1.0 | 60 | 0.8663 |
|
| 309 |
-
| 1.3333 | 80 | 0.8688 |
|
| 310 |
-
| 1.6667 | 100 | 0.8687 |
|
| 311 |
-
| 2.0 | 120 | 0.8689 |
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
### Framework Versions
|
| 315 |
-
- Python: 3.12.2
|
| 316 |
-
- Sentence Transformers: 5.0.0
|
| 317 |
-
- Transformers: 4.51.3
|
| 318 |
-
- PyTorch: 2.7.1+cu126
|
| 319 |
-
- Accelerate: 1.9.0
|
| 320 |
-
- Datasets: 4.0.0
|
| 321 |
-
- Tokenizers: 0.21.2
|
| 322 |
|
| 323 |
## Citation
|
| 324 |
|
| 325 |
-
|
| 326 |
|
| 327 |
-
#### Sentence Transformers
|
| 328 |
```bibtex
|
| 329 |
-
@
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
publisher = "Association for Computational Linguistics",
|
| 336 |
-
url = "https://arxiv.org/abs/1908.10084",
|
| 337 |
}
|
| 338 |
```
|
| 339 |
|
| 340 |
-
|
| 341 |
-
## Glossary
|
| 342 |
-
|
| 343 |
-
*Clearly define terms in order to be accessible across audiences.*
|
| 344 |
-
-->
|
| 345 |
-
|
| 346 |
-
<!--
|
| 347 |
-
## Model Card Authors
|
| 348 |
-
|
| 349 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 350 |
-
-->
|
| 351 |
|
| 352 |
-
|
| 353 |
-
## Model Card Contact
|
| 354 |
|
| 355 |
-
|
| 356 |
-
-->
|
|
|
|
| 1 |
---
|
| 2 |
+
license: mit
|
| 3 |
+
datasets:
|
| 4 |
+
- dleemiller/wiki-sim
|
| 5 |
+
- sentence-transformers/stsb
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
metrics:
|
| 9 |
+
- spearmanr
|
| 10 |
+
- pearsonr
|
| 11 |
+
base_model:
|
| 12 |
+
- jhu-clsp/ettin-encoder-32m
|
| 13 |
+
pipeline_tag: text-classification
|
| 14 |
+
library_name: sentence-transformers
|
| 15 |
tags:
|
|
|
|
| 16 |
- cross-encoder
|
| 17 |
+
- modernbert
|
| 18 |
+
- sts
|
| 19 |
+
- stsb
|
| 20 |
+
- stsbenchmark-sts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
model-index:
|
| 22 |
+
- name: CrossEncoder based on jhu-clsp/ettin-encoder-32m
|
| 23 |
results:
|
| 24 |
- task:
|
| 25 |
+
type: semantic-similarity
|
| 26 |
+
name: Semantic Similarity
|
| 27 |
dataset:
|
| 28 |
+
name: sts test
|
| 29 |
+
type: sts-test
|
| 30 |
metrics:
|
| 31 |
+
- type: pearson_cosine
|
| 32 |
value: 0.8763053568934394
|
| 33 |
+
name: Pearson Cosine
|
| 34 |
+
- type: spearman_cosine
|
| 35 |
value: 0.8688596158541986
|
| 36 |
+
name: Spearman Cosine
|
| 37 |
+
- task:
|
| 38 |
+
type: semantic-similarity
|
| 39 |
+
name: Semantic Similarity
|
| 40 |
+
dataset:
|
| 41 |
+
name: sts dev
|
| 42 |
+
type: sts-dev
|
| 43 |
+
metrics:
|
| 44 |
+
- type: pearson_cosine
|
| 45 |
+
value: 0.8786893775398513
|
| 46 |
+
name: Pearson Cosine
|
| 47 |
+
- type: spearman_cosine
|
| 48 |
+
value: 0.8754715235067954
|
| 49 |
+
name: Spearman Cosine
|
| 50 |
---
|
| 51 |
|
| 52 |
+
# EttinX Cross-Encoder: Semantic Similarity (STS)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
+
Cross encoders are high performing encoder models that compare two texts and output a 0-1 score.
|
| 55 |
+
I've found the `cross-encoders/roberta-large-stsb` model to be very useful in creating evaluators for LLM outputs.
|
| 56 |
+
They're simple to use, fast and very accurate.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
The Ettin series followed up with new encoders trained on the ModernBERT architecture, with a range of sizes, starting at 17M.
|
| 59 |
+
The reduced parameters and computationally efficient interleaved local/global attention layers make this a very fast model,
|
| 60 |
+
which can easily process a few hundred sentence pairs per second on CPU, and a few thousand per second on my A6000.
|
| 61 |
|
| 62 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
## Features
|
| 65 |
+
- **High performing:** Achieves **Pearson: 0.8763** and **Spearman: 0.8689** on the STS-Benchmark test set.
|
| 66 |
+
- **Efficient architecture:** Based on the Ettin-encoder design (32M parameters), offering very fast inference speeds.
|
| 67 |
+
- **Extended context length:** Processes sequences up to 8192 tokens, great for LLM output evals.
|
| 68 |
+
- **Diversified training:** Pretrained on `dleemiller/wiki-sim` and fine-tuned on `sentence-transformers/stsb`.
|
| 69 |
|
| 70 |
+
---
|
| 71 |
|
| 72 |
+
## Performance
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
| Model | STS-B Test Pearson | STS-B Test Spearman | Context Length | Parameters | Speed |
|
| 75 |
+
|--------------------------------|--------------------|---------------------|----------------|------------|---------|
|
| 76 |
+
| `ModernCE-large-sts` | **0.9256** | **0.9215** | **8192** | 395M | **Medium** |
|
| 77 |
+
| `ModernCE-base-sts` | **0.9162** | **0.9122** | **8192** | 149M | **Fast** |
|
| 78 |
+
| `stsb-roberta-large` | 0.9147 | - | 512 | 355M | Slow |
|
| 79 |
+
| `stsb-distilroberta-base` | 0.8792 | - | 512 | 82M | Fast |
|
| 80 |
+
| `EttinX-sts-xs` | 0.8763 | 0.8689 | **8192** | 32M | **Very Fast** |
|
| 81 |
+
| `EttinX-sts-xxs` | 0.8414 | 0.8311 | **8192** | 17M | **Very Fast** |
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
+
---
|
|
|
|
| 85 |
|
| 86 |
+
## Usage
|
| 87 |
|
| 88 |
+
To use EttinX for semantic similarity tasks, you can load the model with the Hugging Face `sentence-transformers` library:
|
|
|
|
| 89 |
|
| 90 |
+
```python
|
| 91 |
+
from sentence_transformers import CrossEncoder
|
| 92 |
|
| 93 |
+
# Load EttinX model
|
| 94 |
+
model = CrossEncoder("dleemiller/EttinX-sts-xs")
|
| 95 |
|
| 96 |
+
# Predict similarity scores for sentence pairs
|
| 97 |
+
sentence_pairs = [
|
| 98 |
+
("It's a wonderful day outside.", "It's so sunny today!"),
|
| 99 |
+
("It's a wonderful day outside.", "He drove to work earlier."),
|
| 100 |
+
]
|
| 101 |
+
scores = model.predict(sentence_pairs)
|
| 102 |
|
| 103 |
+
print(scores) # Outputs: array([0.9184, 0.0123], dtype=float32)
|
| 104 |
+
```
|
| 105 |
|
| 106 |
+
### Output
|
| 107 |
+
The model returns similarity scores in the range `[0, 1]`, where higher scores indicate stronger semantic similarity.
|
| 108 |
|
| 109 |
+
---
|
|
|
|
| 110 |
|
| 111 |
+
## Training Details
|
| 112 |
|
| 113 |
+
### Pretraining
|
| 114 |
+
The model was pretrained on the `pair-score-sampled` subset of the [`dleemiller/wiki-sim`](https://huggingface.co/datasets/dleemiller/wiki-sim) dataset. This dataset provides diverse sentence pairs with semantic similarity scores, helping the model build a robust understanding of relationships between sentences.
|
| 115 |
+
- **Classifier Dropout:** a somewhat large classifier dropout of 0.3, to reduce overreliance on teacher scores.
|
| 116 |
+
- **Objective:** STS-B scores from `cross-encoder/stsb-roberta-large`.
|
| 117 |
|
| 118 |
+
### Fine-Tuning
|
| 119 |
+
Fine-tuning was performed on the [`sentence-transformers/stsb`](https://huggingface.co/datasets/sentence-transformers/stsb) dataset.
|
| 120 |
|
| 121 |
+
### Validation Results
|
| 122 |
+
The model achieved the following test set performance after fine-tuning:
|
| 123 |
+
- **Pearson Correlation:** 0.8763
|
| 124 |
+
- **Spearman Correlation:** 0.8689
|
| 125 |
|
| 126 |
+
---
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
+
## Model Card
|
|
|
|
| 129 |
|
| 130 |
+
- **Architecture:** Ettin-encoder-32m
|
| 131 |
+
- **Tokenizer:** Custom tokenizer trained with modern techniques for long-context handling.
|
| 132 |
+
- **Pretraining Data:** `dleemiller/wiki-sim (pair-score-sampled)`
|
| 133 |
+
- **Fine-Tuning Data:** `sentence-transformers/stsb`
|
| 134 |
|
| 135 |
+
---
|
|
|
|
| 136 |
|
| 137 |
+
## Thank You
|
|
|
|
| 138 |
|
| 139 |
+
Thanks to the Johns Hopkins team for providing the ModernBERT models, and the Sentence Transformers team for their leadership in transformer encoder models.
|
| 140 |
|
| 141 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
## Citation
|
| 144 |
|
| 145 |
+
If you use this model in your research, please cite:
|
| 146 |
|
|
|
|
| 147 |
```bibtex
|
| 148 |
+
@misc{ettinxstsb2025,
|
| 149 |
+
author = {Miller, D. Lee},
|
| 150 |
+
title = {EttinX STS: An STS cross encoder model},
|
| 151 |
+
year = {2025},
|
| 152 |
+
publisher = {Hugging Face Hub},
|
| 153 |
+
url = {https://huggingface.co/dleemiller/EttinX-sts-xxs},
|
|
|
|
|
|
|
| 154 |
}
|
| 155 |
```
|
| 156 |
|
| 157 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
+
## License
|
|
|
|
| 160 |
|
| 161 |
+
This model is licensed under the [MIT License](LICENSE).
|
|
|