--- license: apache-2.0 tags: - generated_from_trainer datasets: - cifar10 metrics: - accuracy model-index: - name: sagemaker-ViT-CIFAR10 results: - task: name: Image Classification type: image-classification dataset: name: cifar10 type: cifar10 config: plain_text split: test[:2000] args: plain_text metrics: - name: Accuracy type: accuracy value: 0.972 --- # sagemaker-ViT-CIFAR10 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar10 dataset. It achieves the following results on the evaluation set: - Loss: 0.2966 - Accuracy: 0.972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 313 | 1.4582 | 0.9325 | | 1.6494 | 2.0 | 626 | 0.4472 | 0.9665 | | 1.6494 | 3.0 | 939 | 0.2966 | 0.972 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2