PPO LunarLander-v2
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +22 -22
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
|
@@ -16,7 +16,7 @@ model-index:
|
|
| 16 |
type: LunarLander-v2
|
| 17 |
metrics:
|
| 18 |
- type: mean_reward
|
| 19 |
-
value:
|
| 20 |
name: mean_reward
|
| 21 |
verified: false
|
| 22 |
---
|
|
|
|
| 16 |
type: LunarLander-v2
|
| 17 |
metrics:
|
| 18 |
- type: mean_reward
|
| 19 |
+
value: 266.82 +/- 20.87
|
| 20 |
name: mean_reward
|
| 21 |
verified: false
|
| 22 |
---
|
config.json
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b904054f060>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b904054f100>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b904054f1a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b904054f240>", "_build": "<function ActorCriticPolicy._build at 0x7b904054f2e0>", "forward": "<function ActorCriticPolicy.forward at 0x7b904054f380>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b904054f420>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b904054f4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b904054f560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b904054f600>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b904054f6a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b904054f740>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b90406bbf80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1751426679875706684, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAAB6izM+SOHZOR5kNrcxCLGzg44ZPKXZVzYAAIA/AACAPzN1Ar1SWJG5UCnpunV1ybXh8Qc7ILULOgAAgD8AAIA/ZtY9vY92Brr621S6t032NUIyWLlACnY5AACAPwAAgD+ayP+8e0qJulJFVrlC1Gq0zmAIuuCieDgAAIA/AACAP5qI2Dwcqyi8ucqruzZ+YTvru4+9SO9kPAAAgD8AAIA/WvusPbb/Hj1F4cC9jcIzvje5FjzXOQ08AAAAAAAAAAAAwNM8SNeaupoO67mCTeS07GsUOHesBzkAAIA/AACAPwBKoD1Ix566IjxcOrO3NTTUcAu6Vc19uQAAgD8AAIA/zTh8PMN1WboxEj06e+ieNUDwgTtirlu5AACAPwAAgD9NKBw94WCcusWm9DiTHuAzvaquuuY4DbgAAIA/AACAP2Z5Yb1cMz+6ImEPu8fxIbTnqCq54hoWMwAAgD8AAIA/ZmYJOvu1vrxI9IO7ukuJPQdXZb1C/9G8AACAPwAAgD+AXDY9XOM0uooSfDlLpOE0tdSuO8Vtk7gAAIA/AACAP2bwG717/qG6Vqf5OOmj7jMR71I51rcPuAAAgD8AAIA/tvafPkbyoD+2R4g+8nSUvkCfnz5NXfS9AAAAAAAAAABmVvc74eyCugBFjzszkWu0FG18uo2ikLMAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGMJhNVR1oyMAWyUTegDjAF0lEdAkXDswHqu83V9lChoBkdAZHAraufVZ2gHTegDaAhHQJF1B+1Bt1p1fZQoaAZHQGN4Ne2NNrVoB03oA2gIR0CRdavzOHFhdX2UKGgGR0BhpYWBSUC8aAdN6ANoCEdAkXYgccU/OnV9lChoBkdAZG2bWEsasWgHTegDaAhHQJF9HBKtga51fZQoaAZHQGYan7YTTORoB03oA2gIR0CRfWIl+mWMdX2UKGgGR0BnNk+/xlQNaAdN6ANoCEdAkYRJZwGW2XV9lChoBkdAXoLSiM5wO2gHTegDaAhHQJGK1S/CZWt1fZQoaAZHQGYfbLdN34doB03oA2gIR0CRlc+lCTlldX2UKGgGR0BfJnMhX8wYaAdN6ANoCEdAkZdb2Dg62nV9lChoBkdAXmGkEcKgI2gHTegDaAhHQJGZDnDBMzx1fZQoaAZHQGPC4LCvX9RoB03oA2gIR0CRmRybhFVldX2UKGgGR0BkAqWRigCfaAdN6ANoCEdAkZmh/I8yOHV9lChoBkdAYT86ySmqHWgHTegDaAhHQJGdW2Yv38J1fZQoaAZHQGJT+wcHWz5oB03oA2gIR0CRvbq814xDdX2UKGgGR0BjppGH58BuaAdN6ANoCEdAkb8/qPfbbnV9lChoBkdAYM19Sde6Z2gHTegDaAhHQJHDQZ2pyZN1fZQoaAZHQGLPZ2hZha1oB03oA2gIR0CRxsfeDWbxdX2UKGgGR0BioXalDWsjaAdN6ANoCEdAkcczWCmMwXV9lChoBkdAZgLahYeT3mgHTegDaAhHQJHHiO3lS0l1fZQoaAZHQGH1Ef9xZMdoB03oA2gIR0CRzS4ZMtbtdX2UKGgGR0Bmxjv5P/JeaAdN6ANoCEdAkc1weA/cFnV9lChoBkdAcVIi9Zid8WgHTWUBaAhHQJHSfCBPKuB1fZQoaAZHQGL8tnXd0q9oB03oA2gIR0CR072+PBBSdX2UKGgGR0BiAxFd9lVcaAdN6ANoCEdAkdsn/5tWMnV9lChoBkdAThnFo+Ofd2gHTSsBaAhHQJHfKFXaJyh1fZQoaAZHQGAOcoQWepZoB03oA2gIR0CR5E2wmmcfdX2UKGgGR0BioO6RQrMDaAdN6ANoCEdAkeWd2X9it3V9lChoBkdAZb+NQ0oBrGgHTegDaAhHQJHnBSLqD9R1fZQoaAZHQGQF2DpTuOVoB03oA2gIR0CR5xLXL/0edX2UKGgGR0BhDpqO938oaAdN6ANoCEdAkeeOZ9d/rnV9lChoBkdAYme+ajN6gWgHTegDaAhHQJHrKiFj/dZ1fZQoaAZHQGbC3t8eCCloB03oA2gIR0CSDAGiHqNZdX2UKGgGR0BApaKtPpIMaAdNEQFoCEdAkg4rUTcqOXV9lChoBkdAZU/+JgsshGgHTegDaAhHQJIQFvMr3Cd1fZQoaAZHQGAjW56MR6FoB03oA2gIR0CSE3nh86V/dX2UKGgGR0Bie0jRlYlqaAdN6ANoCEdAkhPgE2YOUnV9lChoBkdAYZFZrYXfqGgHTegDaAhHQJIUMHJLdvd1fZQoaAZHQGG4hYV6/qRoB03oA2gIR0CSGafYzzmPdX2UKGgGR0BiE+YrrgO0aAdN6ANoCEdAkh65++dsi3V9lChoBkdAXbfYqXnhbWgHTegDaAhHQJIgA4JeE7J1fZQoaAZHQGDU5yuIRAdoB03oA2gIR0CSJcC8vmHQdX2UKGgGR0BgT3GbTc7AaAdN6ANoCEdAkim6yrxRVXV9lChoBkdAYnMDEm6XjWgHTegDaAhHQJIvZ8pkPMB1fZQoaAZHQGIi2T5ftyBoB03oA2gIR0CSMMy+HrQgdX2UKGgGR0Bj2CSHM2WIaAdN6ANoCEdAkjJn3Hq/unV9lChoBkdAYIG9f1Hvt2gHTegDaAhHQJIyeGh24d91fZQoaAZHQF5KHMUypJhoB03oA2gIR0CSMv/+sHSndX2UKGgGR0Biqr6P8yeqaAdN6ANoCEdAklt/J/5Ly3V9lChoBkdAYr3+BH09Q2gHTegDaAhHQJJdjEhq0t11fZQoaAZHQGYQ0HyEtd1oB03oA2gIR0CSX40uDjBEdX2UKGgGR0BifISOBDohaAdN6ANoCEdAkmMfqX4TK3V9lChoBkdAZMP/XGwRoWgHTegDaAhHQJJjilzltCR1fZQoaAZHQGHcTZpSJj5oB03oA2gIR0CSY+GG21D0dX2UKGgGR0Bj618zAN5MaAdN6ANoCEdAkmsm+49X93V9lChoBkdAYcCnk1dgOWgHTegDaAhHQJJxjp4bCJp1fZQoaAZHQGJe4iX6ZYxoB03oA2gIR0CScuj2i+L4dX2UKGgGR0Bjc5MQEpy7aAdN6ANoCEdAknkTnJT2nXV9lChoBkdAY2sIXTEzf2gHTegDaAhHQJJ9hE+gUUR1fZQoaAZHQGRt8580DU5oB03oA2gIR0CSg3NsFdLQdX2UKGgGR0BkJ+jua4MGaAdN6ANoCEdAkoTVdTo+wHV9lChoBkdAZOBL0z0pVmgHTegDaAhHQJKGZFx4ptt1fZQoaAZHQGV+9HUc4o9oB03oA2gIR0CShnL/S6UadX2UKGgGR0BkYwCbMHKPaAdN6ANoCEdAkob0GVzIWHV9lChoBkdAZW1wyZa3Z2gHTegDaAhHQJKsuPyTY/V1fZQoaAZHQFy4i0fHPu5oB03oA2gIR0CSrsX+2mYTdX2UKGgGR0BizjedkJ8faAdN6ANoCEdAkrCfcN6PbXV9lChoBkdAZAsCPp6hQGgHTegDaAhHQJKz1/gBLf11fZQoaAZHQGV7S26TW5JoB03oA2gIR0CStDpjMFEBdX2UKGgGR0BjSC+i8FpxaAdN6ANoCEdAkrSL876pHnV9lChoBkdAYubNX5nDi2gHTegDaAhHQJK6D0kGA091fZQoaAZHQGMzs+u/1xtoB03oA2gIR0CSvyeZG8VYdX2UKGgGR0BfRlH8TBZZaAdN6ANoCEdAksBg2hqTKXV9lChoBkdAZPW+M6zVt2gHTegDaAhHQJLGZCOWBz51fZQoaAZHQGQiFkhA4XJoB03oA2gIR0CSy+cVQAMldX2UKGgGR0BjKNrhzeXSaAdN6ANoCEdAktJddVvMr3V9lChoBkdAYX80a6z3RGgHTegDaAhHQJLTsQZn+Q51fZQoaAZHQGR1jHGS6lNoB03oA2gIR0CS1UftQbdadX2UKGgGR0Bh99cpsoDxaAdN6ANoCEdAktVWL5ylvnV9lChoBkdAYsXzEJjUeGgHTegDaAhHQJLV1X8wYch1fZQoaAZHQEb22QXAM2FoB0vkaAhHQJLWBfMOf/Z1fZQoaAZHQE3dWK/EfkpoB0vbaAhHQJLghoEjgQ91fZQoaAZHQGOfebVjI7xoB03oA2gIR0CS+TXokiUxdX2UKGgGR0Bh0oXqJMxoaAdN6ANoCEdAkvvVqN6w+3V9lChoBkdAYjHtMwlByGgHTegDaAhHQJL+bt0FKTV1fZQoaAZHQGRHPbO/tY1oB03oA2gIR0CTAfEB8x9HdX2UKGgGR0BjGXZmI0qIaAdN6ANoCEdAkwJVYU34sXV9lChoBkdAYRt5E+gUUWgHTegDaAhHQJMCogvDgqF1fZQoaAZHQGNLzjm0VrRoB03oA2gIR0CTB9ZUkv9MdX2UKGgGR0BjTOHHmzSkaAdN6ANoCEdAkw0WOlwcYXV9lChoBkdAY3Ip4rz5GmgHTegDaAhHQJMOXapPykN1fZQoaAZHQDiKAUcn3L5oB00ZAWgIR0CTEJKGL1mKdX2UKGgGR0Bhd/lU6xPgaAdN6ANoCEdAkxfm+oLofXV9lChoBkdAQbA9RrJr+GgHS/RoCEdAkxwu/Dcdo3V9lChoBkdAYXfvP1L8JmgHTegDaAhHQJMdnYL9deJ1fZQoaAZHQGTjlI3BHkNoB03oA2gIR0CTHudGAkLQdX2UKGgGR0BjBZh8YyfuaAdN6ANoCEdAkyBpJTVDr3V9lChoBkdAY+yxu89Oh2gHTegDaAhHQJMg+S4e9zx1fZQoaAZHQGV+sQ2/BWRoB03oA2gIR0CTIS1P3ztkdX2UKGgGR0Bmum5avA45aAdN6ANoCEdAkyzNtqHoHXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025", "Python": "3.11.13", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5d5514ba60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5d5514bb00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5d5514bba0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5d5514bc40>", "_build": "<function ActorCriticPolicy._build at 0x7f5d5514bce0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5d5514bd80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5d5514be20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5d5514bec0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5d5514bf60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5d55154040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5d551540e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5d55154180>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5d55564300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1752955924447941413, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAADAou69u9YXPxDd1r3jOtC+XtiXvejt1rwAAAAAAAAAAMbPKz6p6nK8nvBaPOUa0rqL6Na9LlmpuwAAgD8AAIA/zf3EPVx7G7r9Mu69DYGktQ/ssrs+PBs1AAAAAAAAgD9A3Bs+FETHPd4tTb5ctk6+4bs7va10Zb0AAAAAAAAAAK1LQ77HgWw+iJxsPocbhL7fXvE8auqpPAAAAAAAAAAAwDVqvhSpsT4Caly9aTeGvoRdlb1tj2e8AAAAAAAAAABmE7u9swd8P0lODb7fhPi+UowavSl3ATwAAAAAAAAAAIDKNL6nLxs+uxXWPdQccr4pzWu8NzULPAAAAAAAAAAAU044vihPtz/jw/2+XkThvgqoA76Yq5a9AAAAAAAAAABme4Q8xekmPrsG5b5cGSG+dTp2vqOS0DwAAAAAAAAAAO3wQz78piQ95vOQvs73x73ZJyO9605CvQAAAAAAAAAAGqPwPa6BrboHXwQ0Ttaksuags7u5xQ20AACAPwAAgD8Nm4i9VtG2P9MfzL40eBu+0Q8uvZtw670AAAAAAAAAAOaxd75JDow+lQVKPmmqsb54vda60o2FPQAAAAAAAAAADTxNPvsSjLwKwwa7+Q2AOU/l873AEB86AACAPwAAgD8A0u68j7oiuhu4Hj3uQUo8NQ8Nu5u5MD0AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVEwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCQFFMIu5BmMAWyUS8qMAXSUR0CYRtz7MxGldX2UKGgGR0Bt+SmqHXVcaAdNBwFoCEdAmEfh11W8y3V9lChoBkdAZKGnH/95yGgHTegDaAhHQJhIJyU9pyp1fZQoaAZHQHE4Tghr30xoB0v7aAhHQJhITPX05EN1fZQoaAZHQHE63IZIg/1oB00XAWgIR0CYSQdoWYWtdX2UKGgGR0BwMxufmLccaAdL9GgIR0CYp0TufEn9dX2UKGgGR0By46FqSHM2aAdL+mgIR0CYp4Q5WBBidX2UKGgGR0ByOl90A93baAdL6mgIR0CYqMorWiDedX2UKGgGR0BhlwBaLXMAaAdN6ANoCEdAmKj6w2VE/nV9lChoBkdAYxsh7mdRSGgHTegDaAhHQJipYkKNQ0p1fZQoaAZHQHBCmHDaXa9oB00GAWgIR0CYqmO/tY0VdX2UKGgGR0BySUHPeHi4aAdNHgFoCEdAmKqQPy08eXV9lChoBkdAcoyHk92X9mgHTQUBaAhHQJiqu1rqMWJ1fZQoaAZHQG8g096kZaVoB0vdaAhHQJirTHzYmLN1fZQoaAZHQD8nKgZjx1BoB0vGaAhHQJisX50r9VF1fZQoaAZHQGyjvOY6XBxoB0vraAhHQJiswGkep4t1fZQoaAZHQG+Hjh99c8loB0v+aAhHQJitIm3OObR1fZQoaAZHQHD1JZjhDPZoB002AWgIR0CYr104R28qdX2UKGgGR0BseuYWtU4raAdNDgFoCEdAmLAw1FYuCnV9lChoBkdAcVlk/KQq7WgHTRoBaAhHQJiwYDjin511fZQoaAZHQHApSi7CiypoB0v6aAhHQJiwydf9gnd1fZQoaAZHQG2NME7nxKBoB0vwaAhHQJixEmTkhid1fZQoaAZHQHD1+3x4IKNoB00HAWgIR0CYsWZML4N7dX2UKGgGR0BhdvWUbDMvaAdN6ANoCEdAmLGdV/+bVnV9lChoBkdAcCK5cC5mRWgHS+VoCEdAmLHvwy6+WXV9lChoBkdAcU4joIOYpmgHS/JoCEdAmLMoLkS26XV9lChoBkdAciWz5oGpuWgHS+hoCEdAmLP22Xsw+XV9lChoBkdAcANb/wRXfmgHTSIBaAhHQJi0ADklu3t1fZQoaAZHQHBLmcFyJbdoB0v9aAhHQJi07jT8YQ91fZQoaAZHQHD54plSS/1oB0v0aAhHQJi1BZowmE51fZQoaAZHQG/tP2oNutRoB0v/aAhHQJi3d95Qgs91fZQoaAZHQHE/tUbT+ehoB0vqaAhHQJi4GuIRAbB1fZQoaAZHQFkGEidJ8OVoB03oA2gIR0CYuEbBGhEjdX2UKGgGR0BvE3RG+bmVaAdL/mgIR0CYuF6V+qiodX2UKGgGR0Bx61Qzk6tDaAdNGQFoCEdAmLkMk2P1c3V9lChoBkdAcIP/dIoVmGgHTQsBaAhHQJi5ZE/jbSJ1fZQoaAZHQG9owwj+rENoB00GAWgIR0CYuhxOtW+5dX2UKGgGR0Bv6V69kBjnaAdNPQFoCEdAmLtfCMxXXHV9lChoBkdAcUEJJGvwE2gHS/9oCEdAmLw070WdmXV9lChoBkdAcJuXS0BwM2gHTRwBaAhHQJi8UIIF/x51fZQoaAZHQHFh01AJLM9oB00rAWgIR0CYvbe1rqMWdX2UKGgGR0BzMJ+5OJtSaAdNUQFoCEdAmMCIUvf0mXV9lChoBkdAcQqEzO5avGgHS+5oCEdAmMDOn/DLsHV9lChoBkdAb2RwAlv602gHS+9oCEdAmMEMZUDMeXV9lChoBkdAbdLqk/KQrGgHTZ8DaAhHQJjBkxUNrj51fZQoaAZHQHBMTkU9IPNoB0vfaAhHQJjB1qO938p1fZQoaAZHQG9vzHS4OMFoB00sAWgIR0CYw2C0WuYAdX2UKGgGR0By/MJokAxSaAdNUwFoCEdAmMRECaJAMXV9lChoBkdAb2IpAD7qIWgHS+FoCEdAmMVmphnanXV9lChoBkdAcKUMkyDZlGgHTSIBaAhHQJjFqaQV9F51fZQoaAZHQG8k7ILgGbFoB0vpaAhHQJjF4Kv3ai91fZQoaAZHQHGIoOH31z1oB01XAWgIR0CYxm2oegctdX2UKGgGR0BxwOuQp4KQaAdNIQFoCEdAmMchacI7eXV9lChoBkdAbZ1mvnr6cmgHS91oCEdAmMnCDRMN+nV9lChoBkdAbOSO2iL2pWgHS+xoCEdAmMpiT6i0wHV9lChoBkdAbjhiT+vQnmgHS+NoCEdAmMp0MgEEDHV9lChoBkdAcCD/20zCUGgHS+FoCEdAmMqT9jwx33V9lChoBkdAbcewMYuTR2gHS+JoCEdAmMvCK3uuzXV9lChoBkdAcVdxC6YmcGgHTSgBaAhHQJjMCOwPiDN1fZQoaAZHQGUIC1iONo9oB03oA2gIR0CYzQ+sYEW7dX2UKGgGR0Bx1KdYnv2HaAdL3mgIR0CYzSk7fYSQdX2UKGgGR0BwCR2cJ+lTaAdL+2gIR0CYzsv863iJdX2UKGgGR0BwSDmvGIbgaAdNKwFoCEdAmNEnP7el9HV9lChoBkdAbf6tSydFv2gHS+hoCEdAmNFmOuJUHnV9lChoBkdAcF+xlQMx5GgHS9toCEdAmNMsPWhAW3V9lChoBkdAb5H0I1LrX2gHTQoBaAhHQJjTcEPlMh51fZQoaAZHQHF8wV9F4LVoB00VAWgIR0CY0/gy/KyOdX2UKGgGR0ByxC9Jz1braAdNAAFoCEdAmNTMdkrf+HV9lChoBkdAYtI43FUADWgHTegDaAhHQJjU1bor4Fl1fZQoaAZHQG/3pwjt5UtoB0voaAhHQJjVG0Sh8IB1fZQoaAZHQG33fI8yN4toB0v0aAhHQJjVjpX6qKh1fZQoaAZHQHEZgNoakyloB0v2aAhHQJjXP4Glhw51fZQoaAZHQGTljKxLTQVoB03oA2gIR0CY2GVG0/nodX2UKGgGR0BwUker+5vtaAdL5WgIR0CY2uxVAAyVdX2UKGgGR0Bxv+uB+WnkaAdNFwFoCEdAmNr2Z7Xxv3V9lChoBkdAbpKjNY8uBmgHS+xoCEdAmN0caCL/CXV9lChoBkdAcNW25hBqsWgHTQ0BaAhHQJjdcLJCBwx1fZQoaAZHQG9ILIxQBPtoB0v3aAhHQJjdhYLb5/N1fZQoaAZHQHIMDIV/MGJoB00lAWgIR0CY3ckSVW0adX2UKGgGR0BwPqqcVgx8aAdL6GgIR0CY3dtygf2cdX2UKGgGR0ByJo0/GEPEaAdNKAFoCEdAmN+MQd0aInV9lChoBkdAbeVLoOhCdGgHTQYBaAhHQJjg4Ly+YdB1fZQoaAZHQHAJ3oHLRrtoB0vmaAhHQJjg8xCY1Hh1fZQoaAZHQF51E3sHB1toB03oA2gIR0CY4h8/2TPjdX2UKGgGR0ByeyzRhMJyaAdL+mgIR0CY5Aqy4Wk8dX2UKGgGR0Bu6DQ5WBBiaAdNAwFoCEdAmORUNBnjAHV9lChoBkdAcjHGqxTsIGgHS/BoCEdAmOWK0x/NJXV9lChoBkdAcTlrhisnzGgHS/BoCEdAmOYfi97F9HV9lChoBkdAbtwbDuSfUWgHS/RoCEdAmOZU1ZTya3V9lChoBkdAcrwsS00FbGgHTRkBaAhHQJjnPIXCTEB1fZQoaAZHQGK6LOJLuhNoB03oA2gIR0CY51X9itq6dX2UKGgGR0BxoQTURWcSaAdNHwFoCEdAmOdfgzguRXV9lChoBkdAYIwmICU5dWgHTegDaAhHQJjoYKQaJhx1fZQoaAZHQHBRuKXOW0JoB0viaAhHQJjofs/pt791fZQoaAZHQGXiuQIUrTZoB03oA2gIR0CY6IWBz3h5dX2UKGgGR0ByBcPxx1gZaAdNDQFoCEdAmOikuctoSXV9lChoBkdAb1N9WIXTE2gHTQABaAhHQJjqLr0J4Sp1fZQoaAZHQC4OuA7PppxoB0vJaAhHQJjqcxM36yl1fZQoaAZHQG4+LxI8QqZoB0vuaAhHQJjrOUornT11fZQoaAZHQFhGQLeANG5oB03oA2gIR0CY68IUrTYvdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 320, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025", "Python": "3.11.13", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2d97b5fdbc789136bebd41a884efcae0db90490dc187f20535bdf3c073fe8331
|
| 3 |
+
size 148067
|
ppo-LunarLander-v2/data
CHANGED
|
@@ -4,20 +4,20 @@
|
|
| 4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
"__module__": "stable_baselines3.common.policies",
|
| 6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
| 8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
| 9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
| 10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
| 11 |
-
"_build": "<function ActorCriticPolicy._build at
|
| 12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
| 13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
| 14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
| 15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
| 16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
| 17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
| 18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
| 19 |
"__abstractmethods__": "frozenset()",
|
| 20 |
-
"_abc_impl": "<_abc._abc_data object at
|
| 21 |
},
|
| 22 |
"verbose": 1,
|
| 23 |
"policy_kwargs": {},
|
|
@@ -26,12 +26,12 @@
|
|
| 26 |
"_num_timesteps_at_start": 0,
|
| 27 |
"seed": null,
|
| 28 |
"action_noise": null,
|
| 29 |
-
"start_time":
|
| 30 |
"learning_rate": 0.0003,
|
| 31 |
"tensorboard_log": null,
|
| 32 |
"_last_obs": {
|
| 33 |
":type:": "<class 'numpy.ndarray'>",
|
| 34 |
-
":serialized:": "
|
| 35 |
},
|
| 36 |
"_last_episode_starts": {
|
| 37 |
":type:": "<class 'numpy.ndarray'>",
|
|
@@ -45,13 +45,13 @@
|
|
| 45 |
"_stats_window_size": 100,
|
| 46 |
"ep_info_buffer": {
|
| 47 |
":type:": "<class 'collections.deque'>",
|
| 48 |
-
":serialized:": "
|
| 49 |
},
|
| 50 |
"ep_success_buffer": {
|
| 51 |
":type:": "<class 'collections.deque'>",
|
| 52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 53 |
},
|
| 54 |
-
"_n_updates":
|
| 55 |
"observation_space": {
|
| 56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 57 |
":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
|
|
@@ -77,14 +77,14 @@
|
|
| 77 |
"_np_random": null
|
| 78 |
},
|
| 79 |
"n_envs": 16,
|
| 80 |
-
"n_steps":
|
| 81 |
-
"gamma": 0.
|
| 82 |
-
"gae_lambda": 0.
|
| 83 |
-
"ent_coef": 0.
|
| 84 |
"vf_coef": 0.5,
|
| 85 |
"max_grad_norm": 0.5,
|
| 86 |
"batch_size": 64,
|
| 87 |
-
"n_epochs":
|
| 88 |
"clip_range": {
|
| 89 |
":type:": "<class 'function'>",
|
| 90 |
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
|
|
|
| 4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
"__module__": "stable_baselines3.common.policies",
|
| 6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5d5514ba60>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5d5514bb00>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5d5514bba0>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5d5514bc40>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5d5514bce0>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5d5514bd80>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5d5514be20>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5d5514bec0>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5d5514bf60>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5d55154040>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5d551540e0>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5d55154180>",
|
| 19 |
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f5d55564300>"
|
| 21 |
},
|
| 22 |
"verbose": 1,
|
| 23 |
"policy_kwargs": {},
|
|
|
|
| 26 |
"_num_timesteps_at_start": 0,
|
| 27 |
"seed": null,
|
| 28 |
"action_noise": null,
|
| 29 |
+
"start_time": 1752955924447941413,
|
| 30 |
"learning_rate": 0.0003,
|
| 31 |
"tensorboard_log": null,
|
| 32 |
"_last_obs": {
|
| 33 |
":type:": "<class 'numpy.ndarray'>",
|
| 34 |
+
":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAADAou69u9YXPxDd1r3jOtC+XtiXvejt1rwAAAAAAAAAAMbPKz6p6nK8nvBaPOUa0rqL6Na9LlmpuwAAgD8AAIA/zf3EPVx7G7r9Mu69DYGktQ/ssrs+PBs1AAAAAAAAgD9A3Bs+FETHPd4tTb5ctk6+4bs7va10Zb0AAAAAAAAAAK1LQ77HgWw+iJxsPocbhL7fXvE8auqpPAAAAAAAAAAAwDVqvhSpsT4Caly9aTeGvoRdlb1tj2e8AAAAAAAAAABmE7u9swd8P0lODb7fhPi+UowavSl3ATwAAAAAAAAAAIDKNL6nLxs+uxXWPdQccr4pzWu8NzULPAAAAAAAAAAAU044vihPtz/jw/2+XkThvgqoA76Yq5a9AAAAAAAAAABme4Q8xekmPrsG5b5cGSG+dTp2vqOS0DwAAAAAAAAAAO3wQz78piQ95vOQvs73x73ZJyO9605CvQAAAAAAAAAAGqPwPa6BrboHXwQ0Ttaksuags7u5xQ20AACAPwAAgD8Nm4i9VtG2P9MfzL40eBu+0Q8uvZtw670AAAAAAAAAAOaxd75JDow+lQVKPmmqsb54vda60o2FPQAAAAAAAAAADTxNPvsSjLwKwwa7+Q2AOU/l873AEB86AACAPwAAgD8A0u68j7oiuhu4Hj3uQUo8NQ8Nu5u5MD0AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="
|
| 35 |
},
|
| 36 |
"_last_episode_starts": {
|
| 37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
|
| 45 |
"_stats_window_size": 100,
|
| 46 |
"ep_info_buffer": {
|
| 47 |
":type:": "<class 'collections.deque'>",
|
| 48 |
+
":serialized:": "gAWVEwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCQFFMIu5BmMAWyUS8qMAXSUR0CYRtz7MxGldX2UKGgGR0Bt+SmqHXVcaAdNBwFoCEdAmEfh11W8y3V9lChoBkdAZKGnH/95yGgHTegDaAhHQJhIJyU9pyp1fZQoaAZHQHE4Tghr30xoB0v7aAhHQJhITPX05EN1fZQoaAZHQHE63IZIg/1oB00XAWgIR0CYSQdoWYWtdX2UKGgGR0BwMxufmLccaAdL9GgIR0CYp0TufEn9dX2UKGgGR0By46FqSHM2aAdL+mgIR0CYp4Q5WBBidX2UKGgGR0ByOl90A93baAdL6mgIR0CYqMorWiDedX2UKGgGR0BhlwBaLXMAaAdN6ANoCEdAmKj6w2VE/nV9lChoBkdAYxsh7mdRSGgHTegDaAhHQJipYkKNQ0p1fZQoaAZHQHBCmHDaXa9oB00GAWgIR0CYqmO/tY0VdX2UKGgGR0BySUHPeHi4aAdNHgFoCEdAmKqQPy08eXV9lChoBkdAcoyHk92X9mgHTQUBaAhHQJiqu1rqMWJ1fZQoaAZHQG8g096kZaVoB0vdaAhHQJirTHzYmLN1fZQoaAZHQD8nKgZjx1BoB0vGaAhHQJisX50r9VF1fZQoaAZHQGyjvOY6XBxoB0vraAhHQJiswGkep4t1fZQoaAZHQG+Hjh99c8loB0v+aAhHQJitIm3OObR1fZQoaAZHQHD1JZjhDPZoB002AWgIR0CYr104R28qdX2UKGgGR0BseuYWtU4raAdNDgFoCEdAmLAw1FYuCnV9lChoBkdAcVlk/KQq7WgHTRoBaAhHQJiwYDjin511fZQoaAZHQHApSi7CiypoB0v6aAhHQJiwydf9gnd1fZQoaAZHQG2NME7nxKBoB0vwaAhHQJixEmTkhid1fZQoaAZHQHD1+3x4IKNoB00HAWgIR0CYsWZML4N7dX2UKGgGR0BhdvWUbDMvaAdN6ANoCEdAmLGdV/+bVnV9lChoBkdAcCK5cC5mRWgHS+VoCEdAmLHvwy6+WXV9lChoBkdAcU4joIOYpmgHS/JoCEdAmLMoLkS26XV9lChoBkdAciWz5oGpuWgHS+hoCEdAmLP22Xsw+XV9lChoBkdAcANb/wRXfmgHTSIBaAhHQJi0ADklu3t1fZQoaAZHQHBLmcFyJbdoB0v9aAhHQJi07jT8YQ91fZQoaAZHQHD54plSS/1oB0v0aAhHQJi1BZowmE51fZQoaAZHQG/tP2oNutRoB0v/aAhHQJi3d95Qgs91fZQoaAZHQHE/tUbT+ehoB0vqaAhHQJi4GuIRAbB1fZQoaAZHQFkGEidJ8OVoB03oA2gIR0CYuEbBGhEjdX2UKGgGR0BvE3RG+bmVaAdL/mgIR0CYuF6V+qiodX2UKGgGR0Bx61Qzk6tDaAdNGQFoCEdAmLkMk2P1c3V9lChoBkdAcIP/dIoVmGgHTQsBaAhHQJi5ZE/jbSJ1fZQoaAZHQG9owwj+rENoB00GAWgIR0CYuhxOtW+5dX2UKGgGR0Bv6V69kBjnaAdNPQFoCEdAmLtfCMxXXHV9lChoBkdAcUEJJGvwE2gHS/9oCEdAmLw070WdmXV9lChoBkdAcJuXS0BwM2gHTRwBaAhHQJi8UIIF/x51fZQoaAZHQHFh01AJLM9oB00rAWgIR0CYvbe1rqMWdX2UKGgGR0BzMJ+5OJtSaAdNUQFoCEdAmMCIUvf0mXV9lChoBkdAcQqEzO5avGgHS+5oCEdAmMDOn/DLsHV9lChoBkdAb2RwAlv602gHS+9oCEdAmMEMZUDMeXV9lChoBkdAbdLqk/KQrGgHTZ8DaAhHQJjBkxUNrj51fZQoaAZHQHBMTkU9IPNoB0vfaAhHQJjB1qO938p1fZQoaAZHQG9vzHS4OMFoB00sAWgIR0CYw2C0WuYAdX2UKGgGR0By/MJokAxSaAdNUwFoCEdAmMRECaJAMXV9lChoBkdAb2IpAD7qIWgHS+FoCEdAmMVmphnanXV9lChoBkdAcKUMkyDZlGgHTSIBaAhHQJjFqaQV9F51fZQoaAZHQG8k7ILgGbFoB0vpaAhHQJjF4Kv3ai91fZQoaAZHQHGIoOH31z1oB01XAWgIR0CYxm2oegctdX2UKGgGR0BxwOuQp4KQaAdNIQFoCEdAmMchacI7eXV9lChoBkdAbZ1mvnr6cmgHS91oCEdAmMnCDRMN+nV9lChoBkdAbOSO2iL2pWgHS+xoCEdAmMpiT6i0wHV9lChoBkdAbjhiT+vQnmgHS+NoCEdAmMp0MgEEDHV9lChoBkdAcCD/20zCUGgHS+FoCEdAmMqT9jwx33V9lChoBkdAbcewMYuTR2gHS+JoCEdAmMvCK3uuzXV9lChoBkdAcVdxC6YmcGgHTSgBaAhHQJjMCOwPiDN1fZQoaAZHQGUIC1iONo9oB03oA2gIR0CYzQ+sYEW7dX2UKGgGR0Bx1KdYnv2HaAdL3mgIR0CYzSk7fYSQdX2UKGgGR0BwCR2cJ+lTaAdL+2gIR0CYzsv863iJdX2UKGgGR0BwSDmvGIbgaAdNKwFoCEdAmNEnP7el9HV9lChoBkdAbf6tSydFv2gHS+hoCEdAmNFmOuJUHnV9lChoBkdAcF+xlQMx5GgHS9toCEdAmNMsPWhAW3V9lChoBkdAb5H0I1LrX2gHTQoBaAhHQJjTcEPlMh51fZQoaAZHQHF8wV9F4LVoB00VAWgIR0CY0/gy/KyOdX2UKGgGR0ByxC9Jz1braAdNAAFoCEdAmNTMdkrf+HV9lChoBkdAYtI43FUADWgHTegDaAhHQJjU1bor4Fl1fZQoaAZHQG/3pwjt5UtoB0voaAhHQJjVG0Sh8IB1fZQoaAZHQG33fI8yN4toB0v0aAhHQJjVjpX6qKh1fZQoaAZHQHEZgNoakyloB0v2aAhHQJjXP4Glhw51fZQoaAZHQGTljKxLTQVoB03oA2gIR0CY2GVG0/nodX2UKGgGR0BwUker+5vtaAdL5WgIR0CY2uxVAAyVdX2UKGgGR0Bxv+uB+WnkaAdNFwFoCEdAmNr2Z7Xxv3V9lChoBkdAbpKjNY8uBmgHS+xoCEdAmN0caCL/CXV9lChoBkdAcNW25hBqsWgHTQ0BaAhHQJjdcLJCBwx1fZQoaAZHQG9ILIxQBPtoB0v3aAhHQJjdhYLb5/N1fZQoaAZHQHIMDIV/MGJoB00lAWgIR0CY3ckSVW0adX2UKGgGR0BwPqqcVgx8aAdL6GgIR0CY3dtygf2cdX2UKGgGR0ByJo0/GEPEaAdNKAFoCEdAmN+MQd0aInV9lChoBkdAbeVLoOhCdGgHTQYBaAhHQJjg4Ly+YdB1fZQoaAZHQHAJ3oHLRrtoB0vmaAhHQJjg8xCY1Hh1fZQoaAZHQF51E3sHB1toB03oA2gIR0CY4h8/2TPjdX2UKGgGR0ByeyzRhMJyaAdL+mgIR0CY5Aqy4Wk8dX2UKGgGR0Bu6DQ5WBBiaAdNAwFoCEdAmORUNBnjAHV9lChoBkdAcjHGqxTsIGgHS/BoCEdAmOWK0x/NJXV9lChoBkdAcTlrhisnzGgHS/BoCEdAmOYfi97F9HV9lChoBkdAbtwbDuSfUWgHS/RoCEdAmOZU1ZTya3V9lChoBkdAcrwsS00FbGgHTRkBaAhHQJjnPIXCTEB1fZQoaAZHQGK6LOJLuhNoB03oA2gIR0CY51X9itq6dX2UKGgGR0BxoQTURWcSaAdNHwFoCEdAmOdfgzguRXV9lChoBkdAYIwmICU5dWgHTegDaAhHQJjoYKQaJhx1fZQoaAZHQHBRuKXOW0JoB0viaAhHQJjofs/pt791fZQoaAZHQGXiuQIUrTZoB03oA2gIR0CY6IWBz3h5dX2UKGgGR0ByBcPxx1gZaAdNDQFoCEdAmOikuctoSXV9lChoBkdAb1N9WIXTE2gHTQABaAhHQJjqLr0J4Sp1fZQoaAZHQC4OuA7PppxoB0vJaAhHQJjqcxM36yl1fZQoaAZHQG4+LxI8QqZoB0vuaAhHQJjrOUornT11fZQoaAZHQFhGQLeANG5oB03oA2gIR0CY68IUrTYvdWUu"
|
| 49 |
},
|
| 50 |
"ep_success_buffer": {
|
| 51 |
":type:": "<class 'collections.deque'>",
|
| 52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 53 |
},
|
| 54 |
+
"_n_updates": 320,
|
| 55 |
"observation_space": {
|
| 56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 57 |
":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
|
|
|
|
| 77 |
"_np_random": null
|
| 78 |
},
|
| 79 |
"n_envs": 16,
|
| 80 |
+
"n_steps": 2048,
|
| 81 |
+
"gamma": 0.99,
|
| 82 |
+
"gae_lambda": 0.95,
|
| 83 |
+
"ent_coef": 0.0,
|
| 84 |
"vf_coef": 0.5,
|
| 85 |
"max_grad_norm": 0.5,
|
| 86 |
"batch_size": 64,
|
| 87 |
+
"n_epochs": 10,
|
| 88 |
"clip_range": {
|
| 89 |
":type:": "<class 'function'>",
|
| 90 |
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 88362
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5b7077d350a2a2e2c4ec9705250d0a1b7162f2f0790f5da6986ef9933dc326a3
|
| 3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 43762
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:da6fecf8415cd0354def7fd541fd87b8138b54dd01f39a60686e8828ad31a3d0
|
| 3 |
size 43762
|
replay.mp4
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8be80199501ad42977fef02dba3e9c35135955f63f5b17d3bd95eca529b55177
|
| 3 |
+
size 149935
|
results.json
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"mean_reward":
|
|
|
|
| 1 |
+
{"mean_reward": 266.81810269999994, "std_reward": 20.86675658904337, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-07-19T20:39:25.489270"}
|