Sales Forecast Model (GBR)

Task: Predict Product_Store_Sales_Total from product and store attributes.
Data: dev02chandan/sales-forecast-dataset (raw/SuperKart.csv with processed train/test under processed/).
Model: GradientBoostingRegressor selected via GroupKFold CV on Store_Id.

Test Metrics

  • CV RMSE: 1157.1346565946897
  • RMSE: 1600.05837632221
  • MAE: 1405.5687461646362
  • MAPE: 27.069205177956633
  • sMAPE: 32.25248697544593

Usage

from huggingface_hub import hf_hub_download
import joblib, pandas as pd

pkl_path = hf_hub_download(repo_id="dev02chandan/sales-forecast-model", filename="model.pkl", repo_type="model")
model = joblib.load(pkl_path)

# X must contain the same columns used in training (one-hot is inside the pipeline)
# Example:
# X = pd.DataFrame([...])
# y_pred = model.predict(X)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Dataset used to train dev02chandan/sales-forecast-model

Space using dev02chandan/sales-forecast-model 1