Sales Forecast Model (GBR)
Task: Predict Product_Store_Sales_Total from product and store attributes.
Data: dev02chandan/sales-forecast-dataset (raw/SuperKart.csv with processed train/test under processed/).
Model: GradientBoostingRegressor selected via GroupKFold CV on Store_Id.
Test Metrics
- CV RMSE: 1157.1346565946897
- RMSE: 1600.05837632221
- MAE: 1405.5687461646362
- MAPE: 27.069205177956633
- sMAPE: 32.25248697544593
Usage
from huggingface_hub import hf_hub_download
import joblib, pandas as pd
pkl_path = hf_hub_download(repo_id="dev02chandan/sales-forecast-model", filename="model.pkl", repo_type="model")
model = joblib.load(pkl_path)
# X must contain the same columns used in training (one-hot is inside the pipeline)
# Example:
# X = pd.DataFrame([...])
# y_pred = model.predict(X)