Update README.md
Browse files
README.md
CHANGED
|
@@ -27,7 +27,7 @@ model-index:
|
|
| 27 |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmJlYTIyOTg2NjMyMzg4NzNlNGIzMTY2NDVkMjg0ODdiOWRmYjVkZDYyZjBjNWNiNTBhNjcwOWUzMDM4ZWJiZiIsInZlcnNpb24iOjF9.gxpwIBBA3_5xPi-TaZcqWNnGgCiHzxaUNgrS2jucxoVWGxhBtnPdwKVCxLleQoDDZenAXB3Yh71zMP3xTSeHCw
|
| 28 |
---
|
| 29 |
|
| 30 |
-
# MiniLM-L12-H384-uncased for QA
|
| 31 |
|
| 32 |
## Overview
|
| 33 |
**Language model:** microsoft/MiniLM-L12-H384-uncased
|
|
@@ -35,7 +35,7 @@ model-index:
|
|
| 35 |
**Downstream-task:** Extractive QA
|
| 36 |
**Training data:** SQuAD 2.0
|
| 37 |
**Eval data:** SQuAD 2.0
|
| 38 |
-
**Code:** See an
|
| 39 |
**Infrastructure**: 1x Tesla v100
|
| 40 |
|
| 41 |
## Hyperparameters
|
|
@@ -54,33 +54,34 @@ max_query_length=64
|
|
| 54 |
grad_acc_steps=4
|
| 55 |
```
|
| 56 |
|
| 57 |
-
## Performance
|
| 58 |
-
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
|
| 59 |
-
```
|
| 60 |
-
"exact": 76.13071675229513,
|
| 61 |
-
"f1": 79.49786500219953,
|
| 62 |
-
"total": 11873,
|
| 63 |
-
"HasAns_exact": 78.35695006747639,
|
| 64 |
-
"HasAns_f1": 85.10090269418276,
|
| 65 |
-
"HasAns_total": 5928,
|
| 66 |
-
"NoAns_exact": 73.91084945332211,
|
| 67 |
-
"NoAns_f1": 73.91084945332211,
|
| 68 |
-
"NoAns_total": 5945
|
| 69 |
-
```
|
| 70 |
-
|
| 71 |
## Usage
|
| 72 |
|
| 73 |
### In Haystack
|
| 74 |
-
|
|
|
|
| 75 |
```python
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
```
|
|
|
|
| 80 |
|
| 81 |
### In Transformers
|
| 82 |
```python
|
| 83 |
-
from transformers import AutoModelForQuestionAnswering,
|
| 84 |
|
| 85 |
model_name = "deepset/minilm-uncased-squad2"
|
| 86 |
|
|
@@ -97,6 +98,19 @@ model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
|
| 97 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 98 |
```
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
## Authors
|
| 102 |
**Vaishali Pal:** [email protected]
|
|
@@ -106,6 +120,7 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
| 106 |
**Tanay Soni:** [email protected]
|
| 107 |
|
| 108 |
## About us
|
|
|
|
| 109 |
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
|
| 110 |
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
|
| 111 |
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
|
|
@@ -115,13 +130,12 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
| 115 |
</div>
|
| 116 |
</div>
|
| 117 |
|
| 118 |
-
[deepset](http://deepset.ai/) is the company behind the open-source
|
| 119 |
-
|
| 120 |
|
| 121 |
Some of our other work:
|
| 122 |
-
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](
|
| 123 |
-
- [German BERT
|
| 124 |
-
- [
|
| 125 |
|
| 126 |
## Get in touch and join the Haystack community
|
| 127 |
|
|
@@ -129,6 +143,6 @@ Some of our other work:
|
|
| 129 |
|
| 130 |
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
|
| 131 |
|
| 132 |
-
[Twitter](https://twitter.com/
|
| 133 |
|
| 134 |
By the way: [we're hiring!](http://www.deepset.ai/jobs)
|
|
|
|
| 27 |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmJlYTIyOTg2NjMyMzg4NzNlNGIzMTY2NDVkMjg0ODdiOWRmYjVkZDYyZjBjNWNiNTBhNjcwOWUzMDM4ZWJiZiIsInZlcnNpb24iOjF9.gxpwIBBA3_5xPi-TaZcqWNnGgCiHzxaUNgrS2jucxoVWGxhBtnPdwKVCxLleQoDDZenAXB3Yh71zMP3xTSeHCw
|
| 28 |
---
|
| 29 |
|
| 30 |
+
# MiniLM-L12-H384-uncased for Extractive QA
|
| 31 |
|
| 32 |
## Overview
|
| 33 |
**Language model:** microsoft/MiniLM-L12-H384-uncased
|
|
|
|
| 35 |
**Downstream-task:** Extractive QA
|
| 36 |
**Training data:** SQuAD 2.0
|
| 37 |
**Eval data:** SQuAD 2.0
|
| 38 |
+
**Code:** See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline)
|
| 39 |
**Infrastructure**: 1x Tesla v100
|
| 40 |
|
| 41 |
## Hyperparameters
|
|
|
|
| 54 |
grad_acc_steps=4
|
| 55 |
```
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
## Usage
|
| 58 |
|
| 59 |
### In Haystack
|
| 60 |
+
Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents.
|
| 61 |
+
To load and run the model with [Haystack](https://github.com/deepset-ai/haystack/):
|
| 62 |
```python
|
| 63 |
+
# After running pip install haystack-ai "transformers[torch,sentencepiece]"
|
| 64 |
+
|
| 65 |
+
from haystack import Document
|
| 66 |
+
from haystack.components.readers import ExtractiveReader
|
| 67 |
+
|
| 68 |
+
docs = [
|
| 69 |
+
Document(content="Python is a popular programming language"),
|
| 70 |
+
Document(content="python ist eine beliebte Programmiersprache"),
|
| 71 |
+
]
|
| 72 |
+
|
| 73 |
+
reader = ExtractiveReader(model="deepset/minilm-uncased-squad2")
|
| 74 |
+
reader.warm_up()
|
| 75 |
+
|
| 76 |
+
question = "What is a popular programming language?"
|
| 77 |
+
result = reader.run(query=question, documents=docs)
|
| 78 |
+
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}
|
| 79 |
```
|
| 80 |
+
For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline).
|
| 81 |
|
| 82 |
### In Transformers
|
| 83 |
```python
|
| 84 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
| 85 |
|
| 86 |
model_name = "deepset/minilm-uncased-squad2"
|
| 87 |
|
|
|
|
| 98 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 99 |
```
|
| 100 |
|
| 101 |
+
## Performance
|
| 102 |
+
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
|
| 103 |
+
```
|
| 104 |
+
"exact": 76.13071675229513,
|
| 105 |
+
"f1": 79.49786500219953,
|
| 106 |
+
"total": 11873,
|
| 107 |
+
"HasAns_exact": 78.35695006747639,
|
| 108 |
+
"HasAns_f1": 85.10090269418276,
|
| 109 |
+
"HasAns_total": 5928,
|
| 110 |
+
"NoAns_exact": 73.91084945332211,
|
| 111 |
+
"NoAns_f1": 73.91084945332211,
|
| 112 |
+
"NoAns_total": 5945
|
| 113 |
+
```
|
| 114 |
|
| 115 |
## Authors
|
| 116 |
**Vaishali Pal:** [email protected]
|
|
|
|
| 120 |
**Tanay Soni:** [email protected]
|
| 121 |
|
| 122 |
## About us
|
| 123 |
+
|
| 124 |
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
|
| 125 |
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
|
| 126 |
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
|
|
|
|
| 130 |
</div>
|
| 131 |
</div>
|
| 132 |
|
| 133 |
+
[deepset](http://deepset.ai/) is the company behind the production-ready open-source AI framework [Haystack](https://haystack.deepset.ai/).
|
|
|
|
| 134 |
|
| 135 |
Some of our other work:
|
| 136 |
+
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2)
|
| 137 |
+
- [German BERT](https://deepset.ai/german-bert), [GermanQuAD and GermanDPR](https://deepset.ai/germanquad), [German embedding model](https://huggingface.co/mixedbread-ai/deepset-mxbai-embed-de-large-v1)
|
| 138 |
+
- [deepset Cloud](https://www.deepset.ai/deepset-cloud-product), [deepset Studio](https://www.deepset.ai/deepset-studio)
|
| 139 |
|
| 140 |
## Get in touch and join the Haystack community
|
| 141 |
|
|
|
|
| 143 |
|
| 144 |
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
|
| 145 |
|
| 146 |
+
[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai)
|
| 147 |
|
| 148 |
By the way: [we're hiring!](http://www.deepset.ai/jobs)
|