--- language: - ar license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - tarteel-ai/EA-UD - tarteel-ai/everyayah metrics: - wer model-index: - name: Whisper Medium ar-quran results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: tarteel-ai/EA-UD metrics: - name: Wer type: wer value: 0.15533980582524273 --- # Whisper Medium ar-quran This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.0757 - Wer: 0.1553 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.04 - training_steps: 15000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.0377 | 1.0 | 15000 | 1.0757 | 0.1553 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1 ## Citation ```bibtex @misc{deepdml/whisper-medium-ar-quran-mix, title={Fine-tuned Whisper medium ASR model for speech recognition in Arabic}, author={Jimenez, David}, howpublished={\url{https://huggingface.co/deepdml/whisper-medium-ar-quran-mix}}, year={2025} } ```