readme: add initial version
Browse files- README.md +280 -0
- stats/figures/all_corpus_stats.png +0 -0
- stats/figures/bl_corpus_stats.png +0 -0
- stats/figures/finnish_europeana_corpus_stats.png +0 -0
- stats/figures/french_europeana_corpus_stats.png +0 -0
- stats/figures/german_europeana_corpus_stats.png +0 -0
- stats/figures/pretraining_loss_finnish_europeana.png +0 -0
- stats/figures/pretraining_loss_historic-multilingual.png +0 -0
- stats/figures/pretraining_loss_historic_english.png +0 -0
- stats/figures/pretraining_loss_swedish_europeana.png +0 -0
- stats/figures/swedish_europeana_corpus_stats.png +0 -0
README.md
ADDED
|
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: finnish
|
| 3 |
+
license: mit
|
| 4 |
+
widget:
|
| 5 |
+
- text: "Täkäläinen sanomalehdistö [MASK] erit - täin"
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
# Historic Language Models (HLMs)
|
| 9 |
+
|
| 10 |
+
## Languages
|
| 11 |
+
|
| 12 |
+
Our Historic Language Models Zoo contains support for the following languages - incl. their training data source:
|
| 13 |
+
|
| 14 |
+
| Language | Training data | Size
|
| 15 |
+
| -------- | ------------- | ----
|
| 16 |
+
| German | [Europeana](http://www.europeana-newspapers.eu/) | 13-28GB (filtered)
|
| 17 |
+
| French | [Europeana](http://www.europeana-newspapers.eu/) | 11-31GB (filtered)
|
| 18 |
+
| English | [British Library](https://data.bl.uk/digbks/db14.html) | 24GB (year filtered)
|
| 19 |
+
| Finnish | [Europeana](http://www.europeana-newspapers.eu/) | 1.2GB
|
| 20 |
+
| Swedish | [Europeana](http://www.europeana-newspapers.eu/) | 1.1GB
|
| 21 |
+
|
| 22 |
+
## Models
|
| 23 |
+
|
| 24 |
+
At the moment, the following models are available on the model hub:
|
| 25 |
+
|
| 26 |
+
| Model identifier | Model Hub link
|
| 27 |
+
| --------------------------------------------- | --------------------------------------------------------------------------
|
| 28 |
+
| `dbmdz/bert-base-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased)
|
| 29 |
+
| `dbmdz/bert-base-historic-english-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-english-cased)
|
| 30 |
+
| `dbmdz/bert-base-finnish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-finnish-europeana-cased)
|
| 31 |
+
| `dbmdz/bert-base-swedish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-swedish-europeana-cased)
|
| 32 |
+
|
| 33 |
+
# Corpora Stats
|
| 34 |
+
|
| 35 |
+
## German Europeana Corpus
|
| 36 |
+
|
| 37 |
+
We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size
|
| 38 |
+
and use less-noisier data:
|
| 39 |
+
|
| 40 |
+
| OCR confidence | Size
|
| 41 |
+
| -------------- | ----
|
| 42 |
+
| **0.60** | 28GB
|
| 43 |
+
| 0.65 | 18GB
|
| 44 |
+
| 0.70 | 13GB
|
| 45 |
+
|
| 46 |
+
For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution:
|
| 47 |
+
|
| 48 |
+

|
| 49 |
+
|
| 50 |
+
## French Europeana Corpus
|
| 51 |
+
|
| 52 |
+
Like German, we use different ocr confidence thresholds:
|
| 53 |
+
|
| 54 |
+
| OCR confidence | Size
|
| 55 |
+
| -------------- | ----
|
| 56 |
+
| 0.60 | 31GB
|
| 57 |
+
| 0.65 | 27GB
|
| 58 |
+
| **0.70** | 27GB
|
| 59 |
+
| 0.75 | 23GB
|
| 60 |
+
| 0.80 | 11GB
|
| 61 |
+
|
| 62 |
+
For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution:
|
| 63 |
+
|
| 64 |
+

|
| 65 |
+
|
| 66 |
+
## British Library Corpus
|
| 67 |
+
|
| 68 |
+
Metadata is taken from [here](https://data.bl.uk/digbks/DB21.html). Stats incl. year filtering:
|
| 69 |
+
|
| 70 |
+
| Years | Size
|
| 71 |
+
| ----------------- | ----
|
| 72 |
+
| ALL | 24GB
|
| 73 |
+
| >= 1800 && < 1900 | 24GB
|
| 74 |
+
|
| 75 |
+
We use the year filtered variant. The following plot shows a tokens per year distribution:
|
| 76 |
+
|
| 77 |
+

|
| 78 |
+
|
| 79 |
+
## Finnish Europeana Corpus
|
| 80 |
+
|
| 81 |
+
| OCR confidence | Size
|
| 82 |
+
| -------------- | ----
|
| 83 |
+
| 0.60 | 1.2GB
|
| 84 |
+
|
| 85 |
+
The following plot shows a tokens per year distribution:
|
| 86 |
+
|
| 87 |
+

|
| 88 |
+
|
| 89 |
+
## Swedish Europeana Corpus
|
| 90 |
+
|
| 91 |
+
| OCR confidence | Size
|
| 92 |
+
| -------------- | ----
|
| 93 |
+
| 0.60 | 1.1GB
|
| 94 |
+
|
| 95 |
+
The following plot shows a tokens per year distribution:
|
| 96 |
+
|
| 97 |
+

|
| 98 |
+
|
| 99 |
+
## All Corpora
|
| 100 |
+
|
| 101 |
+
The following plot shows a tokens per year distribution of the complete training corpus:
|
| 102 |
+
|
| 103 |
+

|
| 104 |
+
|
| 105 |
+
# Multilingual Vocab generation
|
| 106 |
+
|
| 107 |
+
For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB.
|
| 108 |
+
The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs:
|
| 109 |
+
|
| 110 |
+
| Language | Size
|
| 111 |
+
| -------- | ----
|
| 112 |
+
| German | 10GB
|
| 113 |
+
| French | 10GB
|
| 114 |
+
| English | 10GB
|
| 115 |
+
| Finnish | 9.5GB
|
| 116 |
+
| Swedish | 9.7GB
|
| 117 |
+
|
| 118 |
+
We then calculate the subword fertility rate and portion of `[UNK]`s over the following NER corpora:
|
| 119 |
+
|
| 120 |
+
| Language | NER corpora
|
| 121 |
+
| -------- | ------------------
|
| 122 |
+
| German | CLEF-HIPE, NewsEye
|
| 123 |
+
| French | CLEF-HIPE, NewsEye
|
| 124 |
+
| English | CLEF-HIPE
|
| 125 |
+
| Finnish | NewsEye
|
| 126 |
+
| Swedish | NewsEye
|
| 127 |
+
|
| 128 |
+
Breakdown of subword fertility rate and unknown portion per language for the 32k vocab:
|
| 129 |
+
|
| 130 |
+
| Language | Subword fertility | Unknown portion
|
| 131 |
+
| -------- | ------------------ | ---------------
|
| 132 |
+
| German | 1.43 | 0.0004
|
| 133 |
+
| French | 1.25 | 0.0001
|
| 134 |
+
| English | 1.25 | 0.0
|
| 135 |
+
| Finnish | 1.69 | 0.0007
|
| 136 |
+
| Swedish | 1.43 | 0.0
|
| 137 |
+
|
| 138 |
+
Breakdown of subword fertility rate and unknown portion per language for the 64k vocab:
|
| 139 |
+
|
| 140 |
+
| Language | Subword fertility | Unknown portion
|
| 141 |
+
| -------- | ------------------ | ---------------
|
| 142 |
+
| German | 1.31 | 0.0004
|
| 143 |
+
| French | 1.16 | 0.0001
|
| 144 |
+
| English | 1.17 | 0.0
|
| 145 |
+
| Finnish | 1.54 | 0.0007
|
| 146 |
+
| Swedish | 1.32 | 0.0
|
| 147 |
+
|
| 148 |
+
# Final pretraining corpora
|
| 149 |
+
|
| 150 |
+
We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here:
|
| 151 |
+
|
| 152 |
+
| Language | Size
|
| 153 |
+
| -------- | ----
|
| 154 |
+
| German | 28GB
|
| 155 |
+
| French | 27GB
|
| 156 |
+
| English | 24GB
|
| 157 |
+
| Finnish | 27GB
|
| 158 |
+
| Swedish | 27GB
|
| 159 |
+
|
| 160 |
+
Total size is 130GB.
|
| 161 |
+
|
| 162 |
+
# Pretraining
|
| 163 |
+
|
| 164 |
+
## Multilingual model
|
| 165 |
+
|
| 166 |
+
We train a multilingual BERT model using the 32k vocab with the official BERT implementation
|
| 167 |
+
on a v3-32 TPU using the following parameters:
|
| 168 |
+
|
| 169 |
+
```bash
|
| 170 |
+
python3 run_pretraining.py --input_file gs://histolectra/historic-multilingual-tfrecords/*.tfrecord \
|
| 171 |
+
--output_dir gs://histolectra/bert-base-historic-multilingual-cased \
|
| 172 |
+
--bert_config_file ./config.json \
|
| 173 |
+
--max_seq_length=512 \
|
| 174 |
+
--max_predictions_per_seq=75 \
|
| 175 |
+
--do_train=True \
|
| 176 |
+
--train_batch_size=128 \
|
| 177 |
+
--num_train_steps=3000000 \
|
| 178 |
+
--learning_rate=1e-4 \
|
| 179 |
+
--save_checkpoints_steps=100000 \
|
| 180 |
+
--keep_checkpoint_max=20 \
|
| 181 |
+
--use_tpu=True \
|
| 182 |
+
--tpu_name=electra-2 \
|
| 183 |
+
--num_tpu_cores=32
|
| 184 |
+
```
|
| 185 |
+
|
| 186 |
+
The following plot shows the pretraining loss curve:
|
| 187 |
+
|
| 188 |
+

|
| 189 |
+
|
| 190 |
+
## English model
|
| 191 |
+
|
| 192 |
+
The English BERT model - with texts from British Library corpus - was trained with the Hugging Face
|
| 193 |
+
JAX/FLAX implementation for 10 epochs (approx. 1M steps) on a v3-8 TPU, using the following command:
|
| 194 |
+
|
| 195 |
+
```bash
|
| 196 |
+
python3 run_mlm_flax.py --model_type bert \
|
| 197 |
+
--config_name /mnt/datasets/bert-base-historic-english-cased/ \
|
| 198 |
+
--tokenizer_name /mnt/datasets/bert-base-historic-english-cased/ \
|
| 199 |
+
--train_file /mnt/datasets/bl-corpus/bl_1800-1900_extracted.txt \
|
| 200 |
+
--validation_file /mnt/datasets/bl-corpus/english_validation.txt \
|
| 201 |
+
--max_seq_length 512 \
|
| 202 |
+
--per_device_train_batch_size 16 \
|
| 203 |
+
--learning_rate 1e-4 \
|
| 204 |
+
--num_train_epochs 10 \
|
| 205 |
+
--preprocessing_num_workers 96 \
|
| 206 |
+
--output_dir /mnt/datasets/bert-base-historic-english-cased-512-noadafactor-10e \
|
| 207 |
+
--save_steps 2500 \
|
| 208 |
+
--eval_steps 2500 \
|
| 209 |
+
--warmup_steps 10000 \
|
| 210 |
+
--line_by_line \
|
| 211 |
+
--pad_to_max_length
|
| 212 |
+
```
|
| 213 |
+
|
| 214 |
+
The following plot shows the pretraining loss curve:
|
| 215 |
+
|
| 216 |
+

|
| 217 |
+
|
| 218 |
+
## Finnish model
|
| 219 |
+
|
| 220 |
+
The BERT model - with texts from Finnish part of Europeana - was trained with the Hugging Face
|
| 221 |
+
JAX/FLAX implementation for 40 epochs (approx. 1M steps) on a v3-8 TPU, using the following command:
|
| 222 |
+
|
| 223 |
+
```bash
|
| 224 |
+
python3 run_mlm_flax.py --model_type bert \
|
| 225 |
+
--config_name /mnt/datasets/bert-base-finnish-europeana-cased/ \
|
| 226 |
+
--tokenizer_name /mnt/datasets/bert-base-finnish-europeana-cased/ \
|
| 227 |
+
--train_file /mnt/datasets/hlms/extracted_content_Finnish_0.6.txt \
|
| 228 |
+
--validation_file /mnt/datasets/hlms/finnish_validation.txt \
|
| 229 |
+
--max_seq_length 512 \
|
| 230 |
+
--per_device_train_batch_size 16 \
|
| 231 |
+
--learning_rate 1e-4 \
|
| 232 |
+
--num_train_epochs 40 \
|
| 233 |
+
--preprocessing_num_workers 96 \
|
| 234 |
+
--output_dir /mnt/datasets/bert-base-finnish-europeana-cased-512-dupe1-noadafactor-40e \
|
| 235 |
+
--save_steps 2500 \
|
| 236 |
+
--eval_steps 2500 \
|
| 237 |
+
--warmup_steps 10000 \
|
| 238 |
+
--line_by_line \
|
| 239 |
+
--pad_to_max_length
|
| 240 |
+
```
|
| 241 |
+
|
| 242 |
+
The following plot shows the pretraining loss curve:
|
| 243 |
+
|
| 244 |
+

|
| 245 |
+
|
| 246 |
+
## Swedish model
|
| 247 |
+
|
| 248 |
+
The BERT model - with texts from Swedish part of Europeana - was trained with the Hugging Face
|
| 249 |
+
JAX/FLAX implementation for 40 epochs (approx. 660K steps) on a v3-8 TPU, using the following command:
|
| 250 |
+
|
| 251 |
+
```bash
|
| 252 |
+
python3 run_mlm_flax.py --model_type bert \
|
| 253 |
+
--config_name /mnt/datasets/bert-base-swedish-europeana-cased/ \
|
| 254 |
+
--tokenizer_name /mnt/datasets/bert-base-swedish-europeana-cased/ \
|
| 255 |
+
--train_file /mnt/datasets/hlms/extracted_content_Swedish_0.6.txt \
|
| 256 |
+
--validation_file /mnt/datasets/hlms/swedish_validation.txt \
|
| 257 |
+
--max_seq_length 512 \
|
| 258 |
+
--per_device_train_batch_size 16 \
|
| 259 |
+
--learning_rate 1e-4 \
|
| 260 |
+
--num_train_epochs 40 \
|
| 261 |
+
--preprocessing_num_workers 96 \
|
| 262 |
+
--output_dir /mnt/datasets/bert-base-swedish-europeana-cased-512-dupe1-noadafactor-40e \
|
| 263 |
+
--save_steps 2500 \
|
| 264 |
+
--eval_steps 2500 \
|
| 265 |
+
--warmup_steps 10000 \
|
| 266 |
+
--line_by_line \
|
| 267 |
+
--pad_to_max_length
|
| 268 |
+
```
|
| 269 |
+
|
| 270 |
+
The following plot shows the pretraining loss curve:
|
| 271 |
+
|
| 272 |
+

|
| 273 |
+
|
| 274 |
+
# Acknowledgments
|
| 275 |
+
|
| 276 |
+
Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as
|
| 277 |
+
TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC ❤️
|
| 278 |
+
|
| 279 |
+
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
|
| 280 |
+
it is possible to download both cased and uncased models from their S3 storage 🤗
|
stats/figures/all_corpus_stats.png
ADDED
|
stats/figures/bl_corpus_stats.png
ADDED
|
stats/figures/finnish_europeana_corpus_stats.png
ADDED
|
stats/figures/french_europeana_corpus_stats.png
ADDED
|
stats/figures/german_europeana_corpus_stats.png
ADDED
|
stats/figures/pretraining_loss_finnish_europeana.png
ADDED
|
stats/figures/pretraining_loss_historic-multilingual.png
ADDED
|
stats/figures/pretraining_loss_historic_english.png
ADDED
|
stats/figures/pretraining_loss_swedish_europeana.png
ADDED
|
stats/figures/swedish_europeana_corpus_stats.png
ADDED
|