Dataset Viewer
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      JSON parse error: Invalid value. in row 0
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 174, in _generate_tables
                  df = pandas_read_json(f)
                       ^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 38, in pandas_read_json
                  return pd.read_json(path_or_buf, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 815, in read_json
                  return json_reader.read()
                         ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1014, in read
                  obj = self._get_object_parser(self.data)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1040, in _get_object_parser
                  obj = FrameParser(json, **kwargs).parse()
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1176, in parse
                  self._parse()
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1392, in _parse
                  ujson_loads(json, precise_float=self.precise_float), dtype=None
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
              ValueError: Expected object or value
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 503, in _iter_arrow
                  for key, pa_table in iterator:
                                       ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 350, in _iter_arrow
                  for key, pa_table in self.generate_tables_fn(**gen_kwags):
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 177, in _generate_tables
                  raise e
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 151, in _generate_tables
                  pa_table = paj.read_json(
                             ^^^^^^^^^^^^^^
                File "pyarrow/_json.pyx", line 342, in pyarrow._json.read_json
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: JSON parse error: Invalid value. in row 0

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

🧬 OmniGenBench Hub: Curated Genomic Datasets for AI Research

License Datasets Framework

Welcome to OmniGenBench Hub - your one-stop repository for high-quality, curated genomic datasets designed specifically for AI and machine learning research in computational biology. Our hub provides seamlessly integrated datasets that work directly with the OmniGenBench framework, enabling researchers to focus on model development rather than data preprocessing.

🎯 What is OmniGenBench Hub?

OmniGenBench Hub is a centralized collection of genomic datasets that have been:

  • βœ… Carefully curated and quality-controlled for research use
  • βœ… Standardized for consistent formatting and structure
  • βœ… Optimized for seamless integration with OmniGenBench framework
  • βœ… Validated through extensive testing and benchmarking
  • βœ… Documented with comprehensive metadata and usage examples

πŸš€ Quick Start

Getting started with our datasets is incredibly simple:

from omnigenbench import OmniDatasetForSequenceClassification, OmniTokenizer

# Initialize tokenizer
tokenizer = OmniTokenizer.from_pretrained("yangheng/OmniGenome-52M")

# Load any dataset from the hub
datasets = OmniDatasetForSequenceClassification.from_hub(
    dataset_name="deepsea_tfb_prediction",
    tokenizer=tokenizer,
    max_length=512
)

# That's it! Your datasets are ready for training and evaluation
# Access train, validation, and test splits
train_dataset = datasets['train']
valid_dataset = datasets['valid']
test_dataset = datasets['test']

πŸ“Š Available Datasets

Our hub currently hosts 3 high-quality datasets spanning multiple genomic AI tasks. Each dataset is carefully organized with data files and configuration scripts.

πŸ“‹ Dataset Categories and Overview

Category Dataset Name Task Type Description Size
🧬 Gene Regulation deepsea_tfb_prediction Classification Transcription Factor Binding Site Prediction 822 MB
πŸ”¬ Protein Synthesis translation_efficiency_prediction Regression mRNA Translation Efficiency Prediction 868 KB
βš—οΈ Functional Genomics variant_effective_prediction Multi-class Variant Effect Prediction on Protein Function 1.64 GB

πŸ“– Detailed Dataset Descriptions

1. 🧬 DeepSEA TFB Prediction (deepsea_tfb_prediction)

  • Research Area: Gene Regulation and Transcription Factor Binding
  • Task: Binary/Multi-class classification of transcription factor binding sites
  • Applications:
    • Regulatory element discovery
    • Gene expression prediction
    • Epigenomic analysis
    • Drug target identification
  • Data Format: DNA sequences with binding labels
  • Usage Example:
from omnigenbench import OmniDatasetForSequenceClassification, OmniTokenizer

tokenizer = OmniTokenizer.from_pretrained("yangheng/OmniGenome-52M")
tfb_datasets = OmniDatasetForSequenceClassification.from_hub(
    dataset_name="deepsea_tfb_prediction",
    tokenizer=tokenizer,
    max_length=512
)
# Access the training dataset
train_data = tfb_datasets['train']

2. πŸ”¬ Translation Efficiency Prediction (translation_efficiency_prediction)

  • Research Area: Protein Synthesis and mRNA Biology
  • Task: Regression for predicting ribosome loading efficiency
  • Applications:
    • mRNA therapeutic design
    • Protein production optimization
    • Synthetic biology applications
    • Gene expression engineering
  • Data Format: mRNA sequences with continuous efficiency scores
  • Usage Example:
from omnigenbench import OmniDatasetForSequenceRegression, OmniTokenizer

tokenizer = OmniTokenizer.from_pretrained("yangheng/OmniGenome-52M")
translation_datasets = OmniDatasetForSequenceRegression.from_hub(
    dataset_name="translation_efficiency_prediction",
    tokenizer=tokenizer,
    max_length=256
)
# Access the training dataset
train_data = translation_datasets['train']

3. βš—οΈ Variant Effect Prediction (variant_effective_prediction)

  • Research Area: Functional Genomics and Precision Medicine
  • Task: Multi-class classification of genetic variant effects
  • Applications:
    • Clinical variant interpretation
    • Precision medicine
    • Pharmacogenomics
    • Disease risk assessment
  • Data Format: Protein sequences with variant effect annotations
  • Usage Example:
from omnigenbench import OmniDatasetForTokenClassification, OmniTokenizer

tokenizer = OmniTokenizer.from_pretrained("yangheng/OmniGenome-52M")
variant_datasets = OmniDatasetForTokenClassification.from_hub(
    dataset_name="variant_effective_prediction",
    tokenizer=tokenizer,
    max_length=1024
)
# Access the training dataset
train_data = variant_datasets['train']

πŸ“ Dataset Structure

Each dataset in our hub follows a standardized structure for consistency and ease of use:

dataset_name.zip
β”œβ”€β”€ data/
β”‚   β”œβ”€β”€ train.csv          # Training data
β”‚   β”œβ”€β”€ valid.csv          # Validation data
β”‚   β”œβ”€β”€ test.csv           # Test data
β”‚   └── metadata.json      # Dataset metadata
β”œβ”€β”€ config.py              # Dataset configuration and loading scripts
└── README.md              # Dataset-specific documentation

πŸ› οΈ Integration with OmniGenBench

Our datasets are designed to work seamlessly with the OmniGenBench ecosystem:

For Classification Tasks

from omnigenbench import OmniDatasetForSequenceClassification, OmniTokenizer

# Initialize tokenizer
tokenizer = OmniTokenizer.from_pretrained("yangheng/OmniGenome-52M")

# Load classification datasets
datasets = OmniDatasetForSequenceClassification.from_hub(
    dataset_name="deepsea_tfb_prediction",
    tokenizer=tokenizer,
    max_length=512
)

# Access individual splits
train_dataset = datasets['train']
valid_dataset = datasets['valid']
test_dataset = datasets['test']

For Regression Tasks

from omnigenbench import OmniDatasetForSequenceRegression, OmniTokenizer

# Initialize tokenizer
tokenizer = OmniTokenizer.from_pretrained("yangheng/OmniGenome-52M")

# Load regression datasets
datasets = OmniDatasetForSequenceRegression.from_hub(
    dataset_name="translation_efficiency_prediction", 
    tokenizer=tokenizer,
    max_length=256
)

# Access individual splits
train_dataset = datasets['train']
valid_dataset = datasets['valid']
test_dataset = datasets['test']

For Token-level Tasks

from omnigenbench import OmniDatasetForTokenClassification, OmniTokenizer

# Initialize tokenizer
tokenizer = OmniTokenizer.from_pretrained("yangheng/OmniGenome-52M")

# Load token-level datasets
datasets = OmniDatasetForTokenClassification.from_hub(
    dataset_name="variant_effective_prediction",
    tokenizer=tokenizer,
    max_length=1024
)

# Access individual splits
train_dataset = datasets['train']
valid_dataset = datasets['valid']
test_dataset = datasets['test']

πŸŽ“ Educational Resources

Each dataset comes with comprehensive educational materials:

  • πŸ“š Tutorial Notebooks: Step-by-step guides for using each dataset
  • πŸ”¬ Scientific Background: Detailed biological context and significance
  • πŸ’‘ Best Practices: Recommended approaches and methodologies
  • πŸ“Š Benchmark Results: Performance baselines from state-of-the-art models

🌟 Key Features

✨ Plug-and-Play Integration

  • One-line dataset loading with automatic preprocessing
  • Compatible with all major deep learning frameworks
  • Seamless integration with Hugging Face ecosystem

πŸ”§ Standardized Format

  • Consistent data structure across all datasets
  • Unified API for different task types
  • Automatic train/validation/test splitting

πŸ“ˆ Research-Ready

  • High-quality, peer-reviewed datasets
  • Comprehensive evaluation metrics
  • Reproducible benchmark results

πŸš€ Performance Optimized

  • Efficient data loading and caching
  • Memory-optimized for large-scale training
  • Multi-processing support for faster iteration

πŸ“‹ Usage Guidelines

Basic Usage Pattern

# 1. Import the framework
from omnigenbench import (
    OmniDatasetForSequenceClassification,
    OmniTokenizer,
    OmniModelForSequenceClassification,
    Trainer
)

# 2. Initialize tokenizer
tokenizer = OmniTokenizer.from_pretrained("yangheng/OmniGenome-52M")

# 3. Load your chosen dataset
datasets = OmniDatasetForSequenceClassification.from_hub(
    dataset_name="deepsea_tfb_prediction",
    tokenizer=tokenizer,
    max_length=512
)

# 4. Initialize model
model = OmniModelForSequenceClassification(
    model_name_or_path="yangheng/OmniGenome-52M",
    tokenizer=tokenizer,
    num_labels=2  # Adjust based on your task
)

# 5. Create trainer and start training
trainer = Trainer(
    model=model,
    train_dataset=datasets['train'],
    valid_dataset=datasets['valid'],
    epochs=10,
    batch_size=16,
    learning_rate=1e-4
)

# 6. Train the model
trainer.train()

# 7. Evaluate on test set
test_results = trainer.evaluate(datasets['test'])
print(f"Test results: {test_results}")

# 8. Inference on new sequences
predictions = model.inference(["ATCGATCGATCG", "GCTAGCTAGCTA"])
print(f"Predictions: {predictions}")

Advanced Configuration

from omnigenbench import OmniDatasetForSequenceRegression, OmniTokenizer

# Initialize tokenizer
tokenizer = OmniTokenizer.from_pretrained("yangheng/OmniGenome-52M")

# Custom configuration for specific needs
datasets = OmniDatasetForSequenceRegression.from_hub(
    dataset_name="translation_efficiency_prediction",
    tokenizer=tokenizer,
    max_length=512,
    cache_dir="./cache"
)

# Create DataLoader with custom settings
train_loader = datasets['train'].get_dataloader(
    batch_size=32,
    shuffle=True,
    num_workers=4,
    pin_memory=True
)

# Use in training loop
for batch in train_loader:
    input_ids = batch['input_ids']
    attention_mask = batch['attention_mask']
    labels = batch['labels']
    # Your training code here...

🀝 Contributing

We welcome contributions to expand our dataset collection! If you have a high-quality genomic dataset that would benefit the research community:

  1. Format your dataset according to our standards
  2. Include comprehensive documentation and metadata
  3. Provide benchmark results using standard evaluation metrics
  4. Submit a pull request with your dataset and documentation

πŸ“„ Licensing

All datasets in OmniGenBench Hub are released under the Apache 2.0 License, ensuring:

  • βœ… Free use for research and commercial applications
  • βœ… Modification and redistribution rights
  • βœ… Patent protection for users
  • βœ… Clear attribution requirements

πŸ“ž Support and Contact

🎯 Roadmap

Coming Soon

  • πŸ“Š Additional Dataset Categories: Epigenomics, Proteomics, Multi-omics
  • πŸ”§ Enhanced Tools: Advanced preprocessing utilities and evaluation metrics
  • 🌐 Community Features: User-contributed datasets and collaborative benchmarks
  • πŸ“± API Expansion: REST API for programmatic access

Future Releases

  • 10+ new datasets covering diverse genomic tasks
  • Automated benchmarking pipeline for consistent evaluation
  • Multi-modal datasets combining sequence, structure, and functional data
  • Real-time dataset updates and version control

πŸ† Acknowledgments

OmniGenBench Hub is built on the foundation of outstanding research from the genomics and AI communities. We thank:

  • The original dataset creators and research teams
  • The open-source community for tools and frameworks
  • Beta testers and early adopters for valuable feedback
  • The Hugging Face team for hosting infrastructure

πŸ“Š Dataset Statistics Summary

Metric Total
Total Datasets 3
Total Size 2.46 GB
Task Types Classification, Regression, Multi-class
Sequence Types DNA, RNA, Protein
Research Areas Gene Regulation, Protein Synthesis, Functional Genomics

🧬 Start your genomic AI journey today with OmniGenBench Hub!

Empowering researchers worldwide with high-quality genomic datasets for breakthrough discoveries in computational biology.

Downloads last month
98