Datasets:
Upload
Browse files- README.md +162 -0
- assets/taco.png +3 -0
README.md
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license:
|
| 3 |
+
- cc-by-4.0
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
tags:
|
| 7 |
+
- remote-sensing
|
| 8 |
+
- planet
|
| 9 |
+
- change-detection
|
| 10 |
+
- spatiotemporal
|
| 11 |
+
- deep-learning
|
| 12 |
+
- video-compression
|
| 13 |
+
pretty_name: DynamicEarthNet-video
|
| 14 |
+
viewer: false
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
<div style="text-align: center; border: 1px solid #ddd; border-radius: 10px; padding: 15px; max-width: 250px; margin: auto; background-color: #f9f9f9;">
|
| 19 |
+
|
| 20 |
+

|
| 21 |
+
|
| 22 |
+
<b><p>This dataset follows the TACO specification.</p></b>
|
| 23 |
+
</div>
|
| 24 |
+
|
| 25 |
+
<br>
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# DynamicEarthNet-video: Daily PlanetFusion Image Cubes Compressed as Videos
|
| 29 |
+
|
| 30 |
+
## Description
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
### 📦 Dataset
|
| 34 |
+
|
| 35 |
+
DynamicEarthNet-video is a storage-efficient re-packaging of the original **DynamicEarthNet** collection.
|
| 36 |
+
The archive covers seventy-five 1024 × 1024 px regions (≈ 3 m GSD) across the globe, sampled daily from **1 January 2018 to 31 December 2019**. Each day is delivered as four-band PlanetFusion surface-reflectance images (B04 Red, B03 Green, B02 Blue, B8A Narrow-NIR). Monthly pixel-wise labels annotate seven land-cover classes: impervious, agriculture, forest, wetlands, bare soil, water and snow/ice.
|
| 37 |
+
|
| 38 |
+
All original GeoTIFF stacks (≈ 525 GB) are transcoded with **[xarrayvideo](https://github.com/IPL-UV/xarrayvideo)** to 12-bit H.265/HEVC, yielding dramatic size savings while preserving scientific fidelity:
|
| 39 |
+
|
| 40 |
+
| Version | Size | PSNR | Ratio |
|
| 41 |
+
| --------------------------- | ---------: | ------: | ----: |
|
| 42 |
+
| Raw GeoTIFF | 525 GB | — | 1 × |
|
| 43 |
+
| **DynamicEarthNet-video** | **8.5 GB** | 60.1 dB | 62 × |
|
| 44 |
+
| Extra-compressed (optional) | 2.1 GB | 54 dB | 249 × |
|
| 45 |
+
|
| 46 |
+
Extensive tests show that semantic change-segmentation scores obtained with U-TAE, U-ConvLSTM and 3D-UNet remain statistically unchanged (Δ mIoU ≤ 0.02 pp) when the compressed cubes replace the raw imagery.
|
| 47 |
+
|
| 48 |
+
The compact video format therefore removes I/O bottlenecks and enables:
|
| 49 |
+
|
| 50 |
+
* end-to-end training of sequence models directly from disk,
|
| 51 |
+
* rapid experimentation on 4-band daily time-series,
|
| 52 |
+
* efficient sharing of benchmarks for change detection and forecasting.
|
| 53 |
+
### 🛰️ Sensors
|
| 54 |
+
|
| 55 |
+
| Instrument | Platform | Bands | Native GSD | Role |
|
| 56 |
+
| ---------------- | --------------------------- | --------- | ---------- | -------------------- |
|
| 57 |
+
| **PlanetFusion** | PlanetScope / SkySat fusion | RGB + NIR | 3 m | Daily image sequence |
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
## 👤 Creators
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
| Name | Affiliation |
|
| 64 |
+
| ---------------------- | ------------------------------------ |
|
| 65 |
+
| Achraf Toker | Technical University of Munich (TUM) |
|
| 66 |
+
| Lisa Kondmann | TUM |
|
| 67 |
+
| Manuel Weber | TUM |
|
| 68 |
+
| Martin Eisenberger | TUM |
|
| 69 |
+
| Alfonso Camero | TUM |
|
| 70 |
+
| Jing Hu | TUM |
|
| 71 |
+
| André Pregel Höderlein | TUM |
|
| 72 |
+
| Çagatay Şenaras | Planet Labs PBC |
|
| 73 |
+
| Tyler Davis | Planet Labs PBC |
|
| 74 |
+
| Daniel Cremers | TUM |
|
| 75 |
+
| Guido Marchisio | Planet Labs PBC |
|
| 76 |
+
| Xiao Xiang Zhu | German Aerospace Center (DLR) / TUM |
|
| 77 |
+
| Laura Leal-Taixé | TUM |
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
## 📂 Original dataset
|
| 81 |
+
|
| 82 |
+
**Download (TUM Mediatum)**: [https://mediatum.ub.tum.de/1650201](https://mediatum.ub.tum.de/1650201)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
## 🌮 Taco dataset
|
| 87 |
+
|
| 88 |
+
## ⚡ Reproducible Example
|
| 89 |
+
|
| 90 |
+
<a target="_blank" href="https://colab.research.google.com/drive/1V3kfJmbWJRVncQwbdqLKgDp4-adMVy4N?usp=sharing">
|
| 91 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
| 92 |
+
</a>
|
| 93 |
+
|
| 94 |
+
```python
|
| 95 |
+
import tacoreader
|
| 96 |
+
import xarrayvideo as xav
|
| 97 |
+
import xarray as xr
|
| 98 |
+
import matplotlib.pyplot as plt
|
| 99 |
+
|
| 100 |
+
# Load tacos
|
| 101 |
+
table = tacoreader.load("tacofoundation:dynamicearthnet-video")
|
| 102 |
+
|
| 103 |
+
# Read a sample row
|
| 104 |
+
idx = 0
|
| 105 |
+
row = dataset.read(idx)
|
| 106 |
+
row_id = dataset.iloc[idx]["tortilla:id"]
|
| 107 |
+
```
|
| 108 |
+
|
| 109 |
+
<center>
|
| 110 |
+
<img src="assets/example.png" width="100%" />
|
| 111 |
+
</center>
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
## 🛰️ Sensor Information
|
| 115 |
+
|
| 116 |
+
Sensors: **planet**
|
| 117 |
+
|
| 118 |
+
## 🎯 Task
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
* **Semantic change detection** and **land-cover mapping** on daily 4-band sequences.
|
| 122 |
+
* Benchmarks include U-TAE, U-ConvLSTM, 3D-UNet (official splits A/B/C) .
|
| 123 |
+
* DynamicEarthNet-video can also serve for next-frame prediction and self-supervised representation learning on high-frequency optical data.
|
| 124 |
+
|
| 125 |
+
## 📚 References
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
### Publication 01
|
| 129 |
+
|
| 130 |
+
* **DOI**: [10.48550/arXiv.2203.12560](https://doi.org/10.48550/arXiv.2203.12560)
|
| 131 |
+
* **Summary**: Toker *et al.* introduce **DynamicEarthNet**, a benchmark of 75 daily 4-band PlanetFusion image cubes (3 m, 2018-2019) with monthly 7-class land-cover masks for semantic‐change segmentation. The paper establishes U-TAE, U-ConvLSTM and 3D-UNet baselines and proposes spatially blocked cross-validation to limit autocorrelation. ([arXiv][1])
|
| 132 |
+
* **BibTeX Citation**
|
| 133 |
+
|
| 134 |
+
```bibtex
|
| 135 |
+
@inproceedings{toker2022dynamicearthnet,
|
| 136 |
+
title = {DynamicEarthNet: Daily Multi-Spectral Satellite Dataset for Semantic Change Segmentation},
|
| 137 |
+
author = {Toker, Aykut and Kondmann, Leonie and Weber, Markus and Eisenberger, Marvin and Camero, Alejandro and others},
|
| 138 |
+
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
|
| 139 |
+
year = {2022},
|
| 140 |
+
doi = {10.48550/arXiv.2203.12560}
|
| 141 |
+
}
|
| 142 |
+
```
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
## 💬 Discussion
|
| 146 |
+
|
| 147 |
+
Chat with the maintainers: [https://huggingface.co/datasets/tacofoundation/DynamicEarthNet-video/discussions](https://huggingface.co/datasets/tacofoundation/DynamicEarthNet-video/discussions)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
## 🤝 Data Providers
|
| 151 |
+
|
| 152 |
+
| Name | Role | URL |
|
| 153 |
+
| --------------- | ---------------- | ------------------------------------------------ |
|
| 154 |
+
| Planet Labs PBC | Imagery provider | [https://www.planet.com](https://www.planet.com) |
|
| 155 |
+
|
| 156 |
+
## 👥 Curators
|
| 157 |
+
|
| 158 |
+
| Name | Organization | URL |
|
| 159 |
+
| ------------------------ | ------------------------- | ---------------------------------------------------------------------------------------------- |
|
| 160 |
+
| Oscar J. Pellicer-Valero | Image Signal Processing (ISP) | [Google Scholar](https://scholar.google.com/citations?user=CCFJshwAAAAJ&hl=en) |
|
| 161 |
+
| Cesar Aybar | Image Signal Processing (ISP) | [Google Scholar](https://scholar.google.es/citations?user=rfF51ocAAAAJ&hl=es) |
|
| 162 |
+
| Julio Contreras | Image Signal Processing (ISP) | [GitHub](https://github.com/JulioContrerasH) |
|
assets/taco.png
ADDED
|
Git LFS Details
|