Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
License:
Commit
·
8d51e7e
1
Parent(s):
f295b0d
Convert dataset to Parquet (#7)
Browse files- Convert dataset to Parquet (f817a2b0170bf1822262d6198427436189c07d04)
- Delete loading script (283dc807270f854f56ed56a1d5ef27109ef8c917)
- Delete legacy dataset_infos.json (703426cda46e0d65db9fe8143397ecee1ec16cc0)
- README.md +14 -5
- data/test-00000-of-00001.parquet +3 -0
- data/train-00000-of-00001.parquet +3 -0
- data/validation-00000-of-00001.parquet +3 -0
- dataset_infos.json +0 -1
- sst2.py +0 -105
README.md
CHANGED
|
@@ -33,16 +33,25 @@ dataset_info:
|
|
| 33 |
'1': positive
|
| 34 |
splits:
|
| 35 |
- name: train
|
| 36 |
-
num_bytes:
|
| 37 |
num_examples: 67349
|
| 38 |
- name: validation
|
| 39 |
-
num_bytes:
|
| 40 |
num_examples: 872
|
| 41 |
- name: test
|
| 42 |
-
num_bytes:
|
| 43 |
num_examples: 1821
|
| 44 |
-
download_size:
|
| 45 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
---
|
| 47 |
|
| 48 |
# Dataset Card for [Dataset Name]
|
|
|
|
| 33 |
'1': positive
|
| 34 |
splits:
|
| 35 |
- name: train
|
| 36 |
+
num_bytes: 4681603
|
| 37 |
num_examples: 67349
|
| 38 |
- name: validation
|
| 39 |
+
num_bytes: 106252
|
| 40 |
num_examples: 872
|
| 41 |
- name: test
|
| 42 |
+
num_bytes: 216640
|
| 43 |
num_examples: 1821
|
| 44 |
+
download_size: 3331058
|
| 45 |
+
dataset_size: 5004495
|
| 46 |
+
configs:
|
| 47 |
+
- config_name: default
|
| 48 |
+
data_files:
|
| 49 |
+
- split: train
|
| 50 |
+
path: data/train-*
|
| 51 |
+
- split: validation
|
| 52 |
+
path: data/validation-*
|
| 53 |
+
- split: test
|
| 54 |
+
path: data/test-*
|
| 55 |
---
|
| 56 |
|
| 57 |
# Dataset Card for [Dataset Name]
|
data/test-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:20d27a86c0c59acb746a41a481ebb1fc71edb72d94b5ccee7f23b9041b17adcf
|
| 3 |
+
size 147787
|
data/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c7921283b75a42e685f50edecb96798607ea0fcbfd0739ee8975f22c12d55f09
|
| 3 |
+
size 3110458
|
data/validation-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fb00fe008f6828f86ba2beda8415a4cf5da0c884f21c5f238c87131b5aa19529
|
| 3 |
+
size 72813
|
dataset_infos.json
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
{"default": {"description": "The Stanford Sentiment Treebank consists of sentences from movie reviews and\nhuman annotations of their sentiment. The task is to predict the sentiment of a\ngiven sentence. We use the two-way (positive/negative) class split, and use only\nsentence-level labels.\n", "citation": "@inproceedings{socher2013recursive,\n title={Recursive deep models for semantic compositionality over a sentiment treebank},\n author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},\n booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},\n pages={1631--1642},\n year={2013}\n}\n", "homepage": "https://nlp.stanford.edu/sentiment/", "license": "Unknown", "features": {"idx": {"dtype": "int32", "id": null, "_type": "Value"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["negative", "positive"], "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "sst2", "config_name": "default", "version": {"version_str": "2.0.0", "description": null, "major": 2, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4690022, "num_examples": 67349, "dataset_name": "sst2"}, "validation": {"name": "validation", "num_bytes": 106361, "num_examples": 872, "dataset_name": "sst2"}, "test": {"name": "test", "num_bytes": 216868, "num_examples": 1821, "dataset_name": "sst2"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/SST-2.zip": {"num_bytes": 7439277, "checksum": "d67e16fb55739c1b32cdce9877596db1c127dc322d93c082281f64057c16deaa"}}, "download_size": 7439277, "post_processing_size": null, "dataset_size": 5013251, "size_in_bytes": 12452528}}
|
|
|
|
|
|
sst2.py
DELETED
|
@@ -1,105 +0,0 @@
|
|
| 1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
"""SST-2 (Stanford Sentiment Treebank v2) dataset."""
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
import csv
|
| 18 |
-
import os
|
| 19 |
-
|
| 20 |
-
import datasets
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
_CITATION = """\
|
| 24 |
-
@inproceedings{socher2013recursive,
|
| 25 |
-
title={Recursive deep models for semantic compositionality over a sentiment treebank},
|
| 26 |
-
author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},
|
| 27 |
-
booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},
|
| 28 |
-
pages={1631--1642},
|
| 29 |
-
year={2013}
|
| 30 |
-
}
|
| 31 |
-
"""
|
| 32 |
-
|
| 33 |
-
_DESCRIPTION = """\
|
| 34 |
-
The Stanford Sentiment Treebank consists of sentences from movie reviews and
|
| 35 |
-
human annotations of their sentiment. The task is to predict the sentiment of a
|
| 36 |
-
given sentence. We use the two-way (positive/negative) class split, and use only
|
| 37 |
-
sentence-level labels.
|
| 38 |
-
"""
|
| 39 |
-
|
| 40 |
-
_HOMEPAGE = "https://nlp.stanford.edu/sentiment/"
|
| 41 |
-
|
| 42 |
-
_LICENSE = "Unknown"
|
| 43 |
-
|
| 44 |
-
_URL = "https://dl.fbaipublicfiles.com/glue/data/SST-2.zip"
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
class Sst2(datasets.GeneratorBasedBuilder):
|
| 48 |
-
"""SST-2 dataset."""
|
| 49 |
-
|
| 50 |
-
VERSION = datasets.Version("2.0.0")
|
| 51 |
-
|
| 52 |
-
def _info(self):
|
| 53 |
-
features = datasets.Features(
|
| 54 |
-
{
|
| 55 |
-
"idx": datasets.Value("int32"),
|
| 56 |
-
"sentence": datasets.Value("string"),
|
| 57 |
-
"label": datasets.features.ClassLabel(names=["negative", "positive"]),
|
| 58 |
-
}
|
| 59 |
-
)
|
| 60 |
-
return datasets.DatasetInfo(
|
| 61 |
-
description=_DESCRIPTION,
|
| 62 |
-
features=features,
|
| 63 |
-
homepage=_HOMEPAGE,
|
| 64 |
-
license=_LICENSE,
|
| 65 |
-
citation=_CITATION,
|
| 66 |
-
)
|
| 67 |
-
|
| 68 |
-
def _split_generators(self, dl_manager):
|
| 69 |
-
dl_dir = dl_manager.download_and_extract(_URL)
|
| 70 |
-
return [
|
| 71 |
-
datasets.SplitGenerator(
|
| 72 |
-
name=datasets.Split.TRAIN,
|
| 73 |
-
gen_kwargs={
|
| 74 |
-
"file_paths": dl_manager.iter_files(dl_dir),
|
| 75 |
-
"data_filename": "train.tsv",
|
| 76 |
-
},
|
| 77 |
-
),
|
| 78 |
-
datasets.SplitGenerator(
|
| 79 |
-
name=datasets.Split.VALIDATION,
|
| 80 |
-
gen_kwargs={
|
| 81 |
-
"file_paths": dl_manager.iter_files(dl_dir),
|
| 82 |
-
"data_filename": "dev.tsv",
|
| 83 |
-
},
|
| 84 |
-
),
|
| 85 |
-
datasets.SplitGenerator(
|
| 86 |
-
name=datasets.Split.TEST,
|
| 87 |
-
gen_kwargs={
|
| 88 |
-
"file_paths": dl_manager.iter_files(dl_dir),
|
| 89 |
-
"data_filename": "test.tsv",
|
| 90 |
-
},
|
| 91 |
-
),
|
| 92 |
-
]
|
| 93 |
-
|
| 94 |
-
def _generate_examples(self, file_paths, data_filename):
|
| 95 |
-
for file_path in file_paths:
|
| 96 |
-
filename = os.path.basename(file_path)
|
| 97 |
-
if filename == data_filename:
|
| 98 |
-
with open(file_path, encoding="utf8") as f:
|
| 99 |
-
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
| 100 |
-
for idx, row in enumerate(reader):
|
| 101 |
-
yield idx, {
|
| 102 |
-
"idx": row["index"] if "index" in row else idx,
|
| 103 |
-
"sentence": row["sentence"],
|
| 104 |
-
"label": int(row["label"]) if "label" in row else -1,
|
| 105 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|