import json import os import datasets _DESCRIPTION = """ SPLICE is a human-curated benchmark designed to evaluate the temporal and causal reasoning capabilities of Multimodal Large Language Models (MLLMs). The core task is to reorder a set of shuffled video segments from a single procedural event into their correct chronological sequence. The dataset is derived from 3,381 instructional videos from the COIN dataset, segmented into 11,423 coherent event clips. """ _CITATION = """ @inproceedings{ ballout2025can, title={{Can you {SPLICE} it together? A Human Curated Benchmark for Probing Visual Reasoning in {VLM}s}}, author={Mohamad Ballout* and Okajevo Wilfred* and Seyedalireza Yaghoubi and Nohayr Muhammad Abdelmoneim and Julius Mayer and Elia Bruni}, booktitle={The 2025 Conference on Empirical Methods in Natural Language Processing}, year={2025}, url={https://openreview.net/forum?id=deFgBHsHxl} } """ class SpliceBenchmark(datasets.GeneratorBasedBuilder): """The SPLICE Benchmark Dataset.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "video_id": datasets.Value("string"), "domain": datasets.Value("string"), "class": datasets.Value("string"), "subset": datasets.Value("string"), "video_url": datasets.Value("string"), "duration": datasets.Value("float"), "segments": datasets.Sequence( { "part": datasets.Value("int32"), "segment_id": datasets.Value("string"), "label": datasets.Value("string"), "start": datasets.Value("float"), "end": datasets.Value("float"), "video_clip": datasets.Video() } ), } ), homepage="https://huggingface.co/datasets/prokajevo/splice-benchmark", citation=_CITATION, ) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(".") metadata_path = os.path.join(data_dir, "splice_segment_metadata.json") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"metadata_path": metadata_path, "data_dir": data_dir}, ), ] def _generate_examples(self, metadata_path, data_dir): with open(metadata_path, "r") as f: data = json.load(f) video_count = 0 for video_info in data: try: if not video_info.get("segments"): continue segments_data = [] for segment in video_info.get("segments", []): if "output_path" in segment and segment["output_path"]: video_path = os.path.join(data_dir, segment["output_path"]) if os.path.exists(video_path): segments_data.append({ "part": segment.get("part", -1), "segment_id": segment.get("segment_id", ""), "label": segment.get("label", ""), "start": segment.get("start", -1.0), "end": segment.get("end", -1.0), "video_clip": video_path, }) if segments_data: yield video_count, { "video_id": video_info.get("video_id", ""), "domain": video_info.get("Domain", ""), "class": video_info.get("class", ""), "subset": video_info.get("subset", ""), "video_url": video_info.get("video_url", ""), "duration": video_info.get("duration", -1.0), "segments": segments_data, } video_count += 1 except Exception as e: print(f"--> WARNING: Skipping corrupted data for video {video_info.get('video_id', 'unknown')}. Error: {e}") continue