christophalt commited on
Commit
d89d227
·
1 Parent(s): aa6a999

Upload all datasets to hub

Browse files

Commit from https://github.com/huggingface/datasets/pie/commit/44e2b49f756ae55906addbd4cbcb339698ea0e7c

dummy/ncbi_disease/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2966e8cee74b58e19b3415bf5376f14dd8dc9e3cfc8e40f9399c62a0aa2dde02
3
+ size 577
ncbi_disease.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+
3
+ import datasets
4
+ import pytorch_ie.data.builder
5
+ from pytorch_ie.annotations import LabeledSpan
6
+ from pytorch_ie.core import AnnotationList, annotation_field
7
+ from pytorch_ie.documents import TextDocument
8
+ from pytorch_ie.utils.span import tokens_and_tags_to_text_and_labeled_spans
9
+
10
+
11
+ class NCBIDiseaseConfig(datasets.BuilderConfig):
12
+ """BuilderConfig for NCBIDisease"""
13
+
14
+ def __init__(self, **kwargs):
15
+ """BuilderConfig for NCBIDisease.
16
+ Args:
17
+ **kwargs: keyword arguments forwarded to super.
18
+ """
19
+ super().__init__(**kwargs)
20
+
21
+
22
+ @dataclass
23
+ class NCBIDiseaseDocument(TextDocument):
24
+ entities: AnnotationList[LabeledSpan] = annotation_field(target="text")
25
+
26
+
27
+ class NCBIDisease(pytorch_ie.data.builder.GeneratorBasedBuilder):
28
+ DOCUMENT_TYPE = NCBIDiseaseDocument
29
+
30
+ BASE_DATASET_PATH = "ncbi_disease"
31
+
32
+ BUILDER_CONFIGS = [
33
+ NCBIDiseaseConfig(
34
+ name="ncbi_disease",
35
+ version=datasets.Version("1.0.0"),
36
+ description="NCBIDisease dataset",
37
+ ),
38
+ ]
39
+
40
+ def _generate_document_kwargs(self, dataset):
41
+ return {"int_to_str": dataset.features["ner_tags"].feature.int2str}
42
+
43
+ def _generate_document(self, example, int_to_str):
44
+ doc_id = example["id"]
45
+ tokens = example["tokens"]
46
+ ner_tags = [int_to_str(tag) for tag in example["ner_tags"]]
47
+
48
+ text, ner_spans = tokens_and_tags_to_text_and_labeled_spans(tokens=tokens, tags=ner_tags)
49
+
50
+ document = NCBIDiseaseDocument(text=text, id=doc_id)
51
+
52
+ for span in sorted(ner_spans, key=lambda span: span.start):
53
+ document.entities.append(span)
54
+
55
+ return document