--- license: mit dataset_info: features: - name: id dtype: string - name: instruction dtype: string - name: question dtype: string - name: option1 dtype: string - name: option2 dtype: string - name: option3 dtype: string - name: option4 dtype: string - name: answer dtype: string - name: image dtype: image - name: audio dtype: audio splits: - name: validation num_bytes: 873288128.0 num_examples: 900 download_size: 819328629 dataset_size: 873288128.0 configs: - config_name: default data_files: - split: validation path: data/validation-* --- # Multi-TW: Traditional Chinese Language Learning Dataset ## Dataset Description Multi-TW is a Traditional Chinese language learning and assessment dataset containing 900 multiple-choice questions with multimedia content. This dataset is designed for evaluating multi-modal language models on Traditional Chinese comprehension tasks. ## Dataset Structure The dataset contains 900 samples in the validation split, suitable for benchmarking purposes. ### Data Fields - `id`: Unique identifier for each question - `instruction`: Task instructions in Chinese - `question`: The question text in Chinese - `option1`: Multiple choice option A - `option2`: Multiple choice option B - `option3`: Multiple choice option C - `option4`: Multiple choice option D (may be empty) - `answer`: Correct answer (A, B, C, or D) - `image`: PIL Image object (for visual questions) - `audio`: Audio data with sampling rate (for audio questions) ### Data Composition - **Total samples**: 900 - **Samples with images**: 450 - **Samples with audio**: 450 - **Answer distribution**: A: 249, B: 261, C: 263, D: 127 - **Question types**: L (Listening): 660, R (Reading): 240 ## Usage ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("ntuai/multi-tw") validation_data = dataset["validation"] # Access a sample sample = validation_data[0] print(f"Question: {sample['question']}") print(f"Options: {sample['option1']}, {sample['option2']}, {sample['option3']}") print(f"Answer: {sample['answer']}") # Check if sample has image or audio if sample['image'] is not None: # Process image image = sample['image'] if sample['audio'] is not None: # Process audio audio_array = sample['audio']['array'] sampling_rate = sample['audio']['sampling_rate'] ``` ## Dataset Statistics The dataset covers various aspects of Chinese language learning: - **Visual comprehension**: Questions requiring image understanding - **Audio comprehension**: Questions requiring audio understanding - **Multiple choice format**: 3-4 options per question - **Balanced distribution**: Relatively even distribution across answer choices ## License 本研究使用華測會官網之公開模擬試題,試題著作權為華測會所有,僅供個人學習使用,不得作為營利用途 ## Citation If you use this dataset in your research, please cite: ```bibtex @dataset{multi_tw_2025, title={Multi-TW: Benchmarking Multimodal Models on Traditional Chinese Question Answering in Taiwan}, author={Jui-Ming Yao, Bing-Cheng Xie, Sheng-Wei Peng, Hao-Yuan Chen, He-Rong Zheng, Bing-Jia Tan, Peter Shaojui Wang, and Shun-Feng Su}, year={2025}, publisher={Hugging Face}, url={https://huggingface.co/datasets/ntuai/multi-tw} } ```