--- dataset_info: features: - name: text dtype: string - name: label_categories dtype: int64 - name: lang dtype: string splits: - name: train num_bytes: 12397135 num_examples: 17501 - name: validation num_bytes: 2689677 num_examples: 3751 - name: test num_bytes: 2670478 num_examples: 3751 download_size: 10961920 dataset_size: 17757290 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* task_categories: - text-classification language: - en - ca - es tags: - science --- # Multilingual Scientific Text Classification Dataset (MAG FoS L1) ## Overview This dataset contains multilingual scientific text samples (Catalan, Spanish, and English) extracted from scientific publications. Each sample is labeled using **Microsoft Academic Graph (MAG) Field of Study — Level 1** categories. For each publication, the `text` field is a **random selection** of: - the title - the abstract - the title followed by the abstract (`title + ". " + abstract`) This introduces natural variation and improves model robustness for text classification tasks. --- ## Dataset Structure ### Features | Feature | Type | Description | |-----------|----------|--------------------------------------------------------------| | `text` | string | Randomly selected title, abstract, or title + abstract | | `label` | string | MAG Field of Study (FoS) Level 1 category | | `language`| string | ISO code of publication language (`ca`, `es`, `en`) | ### Splits | Split | Samples | |-------------|---------| | Train | 20,059 | | Validation | 2,507 | | Test | 2,508 | | **Total** | 25,074 | Splits follow an **80/10/10 ratio**. --- ## Languages The dataset includes scientific publications written in: - **Catalan (`ca`)** - **Spanish (`es`)** - **English (`en`)** --- ## Task **Multiclass Scientific Text Classification** Your model should predict the **Field of Study (FoS) Level 1** category from a scientific text snippet. This dataset is suitable for: - multilingual text classification - scientific-domain NLP - domain adaptation - benchmarking multilingual LLMs (mBERT, XLM-R, LLaMA, etc.) - zero-shot or few-shot evaluation --- ## Source The labels correspond to **Level 1 Fields of Study from the Microsoft Academic Graph (MAG)** ontology. Typical categories include (examples): - Chemistry - Physics - Biology - Computer Science - Mathematics - Medicine - Social Sciences - Engineering - Earth Sciences - Environmental Science The exact label set matches the categories present in the processed data. --- ## Creation Process 1. Load publication metadata (title, abstract, language, FoS). 2. Clean and normalize text fields. 3. Randomly choose one of: - title - abstract - title + abstract 4. Assign the MAG FoS L1 label. 5. Perform an 80/10/10 train-validation-test split using HuggingFace `datasets`. --- ## Usage ### Load the dataset ```python from datasets import load_dataset dataset = load_dataset("YOUR_USERNAME/YOUR_DATASET_NAME") print(dataset["train"][0]) Example record json Copy code { "text": "Reactividad de CHI3 con radicales O... Las vías de abstracción...", "label": "Physical chemistry", "language": "es" }