nicolauduran45 commited on
Commit
c84b8fd
·
verified ·
1 Parent(s): 4edb5b7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +119 -1
README.md CHANGED
@@ -18,7 +18,7 @@ dataset_info:
18
  num_bytes: 2255170.8145489353
19
  num_examples: 2508
20
  download_size: 13625805
21
- dataset_size: 22546313.0
22
  configs:
23
  - config_name: default
24
  data_files:
@@ -28,4 +28,122 @@ configs:
28
  path: data/validation-*
29
  - split: test
30
  path: data/test-*
 
 
 
 
 
 
 
 
31
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  num_bytes: 2255170.8145489353
19
  num_examples: 2508
20
  download_size: 13625805
21
+ dataset_size: 22546313
22
  configs:
23
  - config_name: default
24
  data_files:
 
28
  path: data/validation-*
29
  - split: test
30
  path: data/test-*
31
+ task_categories:
32
+ - text-classification
33
+ language:
34
+ - en
35
+ - ca
36
+ - es
37
+ tags:
38
+ - science
39
  ---
40
+
41
+
42
+ # Multilingual Scientific Text Classification Dataset (MAG FoS L1)
43
+
44
+ ## Overview
45
+ This dataset contains multilingual scientific text samples (Catalan, Spanish, and English) extracted from scientific publications.
46
+ Each sample is labeled using **Microsoft Academic Graph (MAG) Field of Study — Level 1** categories.
47
+
48
+ For each publication, the `text` field is a **random selection** of:
49
+
50
+ - the title
51
+ - the abstract
52
+ - the title followed by the abstract (`title + ". " + abstract`)
53
+
54
+ This introduces natural variation and improves model robustness for text classification tasks.
55
+
56
+ ---
57
+
58
+ ## Dataset Structure
59
+
60
+ ### Features
61
+ | Feature | Type | Description |
62
+ |-----------|----------|--------------------------------------------------------------|
63
+ | `text` | string | Randomly selected title, abstract, or title + abstract |
64
+ | `label` | string | MAG Field of Study (FoS) Level 1 category |
65
+ | `language`| string | ISO code of publication language (`ca`, `es`, `en`) |
66
+
67
+ ### Splits
68
+ | Split | Samples |
69
+ |-------------|---------|
70
+ | Train | 20,059 |
71
+ | Validation | 2,507 |
72
+ | Test | 2,508 |
73
+ | **Total** | 25,074 |
74
+
75
+ Splits follow an **80/10/10 ratio**.
76
+
77
+ ---
78
+
79
+ ## Languages
80
+ The dataset includes scientific publications written in:
81
+
82
+ - **Catalan (`ca`)**
83
+ - **Spanish (`es`)**
84
+ - **English (`en`)**
85
+
86
+ ---
87
+
88
+ ## Task
89
+ **Multiclass Scientific Text Classification**
90
+
91
+ Your model should predict the **Field of Study (FoS) Level 1** category from a scientific text snippet.
92
+ This dataset is suitable for:
93
+
94
+ - multilingual text classification
95
+ - scientific-domain NLP
96
+ - domain adaptation
97
+ - benchmarking multilingual LLMs (mBERT, XLM-R, LLaMA, etc.)
98
+ - zero-shot or few-shot evaluation
99
+
100
+ ---
101
+
102
+ ## Source
103
+ The labels correspond to **Level 1 Fields of Study from the Microsoft Academic Graph (MAG)** ontology.
104
+
105
+ Typical categories include (examples):
106
+
107
+ - Chemistry
108
+ - Physics
109
+ - Biology
110
+ - Computer Science
111
+ - Mathematics
112
+ - Medicine
113
+ - Social Sciences
114
+ - Engineering
115
+ - Earth Sciences
116
+ - Environmental Science
117
+
118
+ The exact label set matches the categories present in the processed data.
119
+
120
+ ---
121
+
122
+ ## Creation Process
123
+ 1. Load publication metadata (title, abstract, language, FoS).
124
+ 2. Clean and normalize text fields.
125
+ 3. Randomly choose one of:
126
+ - title
127
+ - abstract
128
+ - title + abstract
129
+ 4. Assign the MAG FoS L1 label.
130
+ 5. Perform an 80/10/10 train-validation-test split using HuggingFace `datasets`.
131
+
132
+ ---
133
+
134
+ ## Usage
135
+
136
+ ### Load the dataset
137
+ ```python
138
+ from datasets import load_dataset
139
+
140
+ dataset = load_dataset("YOUR_USERNAME/YOUR_DATASET_NAME")
141
+ print(dataset["train"][0])
142
+ Example record
143
+ json
144
+ Copy code
145
+ {
146
+ "text": "Reactividad de CHI3 con radicales O... Las vías de abstracción...",
147
+ "label": "Physical chemistry",
148
+ "language": "es"
149
+ }