Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -18,7 +18,7 @@ dataset_info:
|
|
| 18 |
num_bytes: 2255170.8145489353
|
| 19 |
num_examples: 2508
|
| 20 |
download_size: 13625805
|
| 21 |
-
dataset_size: 22546313
|
| 22 |
configs:
|
| 23 |
- config_name: default
|
| 24 |
data_files:
|
|
@@ -28,4 +28,122 @@ configs:
|
|
| 28 |
path: data/validation-*
|
| 29 |
- split: test
|
| 30 |
path: data/test-*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
num_bytes: 2255170.8145489353
|
| 19 |
num_examples: 2508
|
| 20 |
download_size: 13625805
|
| 21 |
+
dataset_size: 22546313
|
| 22 |
configs:
|
| 23 |
- config_name: default
|
| 24 |
data_files:
|
|
|
|
| 28 |
path: data/validation-*
|
| 29 |
- split: test
|
| 30 |
path: data/test-*
|
| 31 |
+
task_categories:
|
| 32 |
+
- text-classification
|
| 33 |
+
language:
|
| 34 |
+
- en
|
| 35 |
+
- ca
|
| 36 |
+
- es
|
| 37 |
+
tags:
|
| 38 |
+
- science
|
| 39 |
---
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
# Multilingual Scientific Text Classification Dataset (MAG FoS L1)
|
| 43 |
+
|
| 44 |
+
## Overview
|
| 45 |
+
This dataset contains multilingual scientific text samples (Catalan, Spanish, and English) extracted from scientific publications.
|
| 46 |
+
Each sample is labeled using **Microsoft Academic Graph (MAG) Field of Study — Level 1** categories.
|
| 47 |
+
|
| 48 |
+
For each publication, the `text` field is a **random selection** of:
|
| 49 |
+
|
| 50 |
+
- the title
|
| 51 |
+
- the abstract
|
| 52 |
+
- the title followed by the abstract (`title + ". " + abstract`)
|
| 53 |
+
|
| 54 |
+
This introduces natural variation and improves model robustness for text classification tasks.
|
| 55 |
+
|
| 56 |
+
---
|
| 57 |
+
|
| 58 |
+
## Dataset Structure
|
| 59 |
+
|
| 60 |
+
### Features
|
| 61 |
+
| Feature | Type | Description |
|
| 62 |
+
|-----------|----------|--------------------------------------------------------------|
|
| 63 |
+
| `text` | string | Randomly selected title, abstract, or title + abstract |
|
| 64 |
+
| `label` | string | MAG Field of Study (FoS) Level 1 category |
|
| 65 |
+
| `language`| string | ISO code of publication language (`ca`, `es`, `en`) |
|
| 66 |
+
|
| 67 |
+
### Splits
|
| 68 |
+
| Split | Samples |
|
| 69 |
+
|-------------|---------|
|
| 70 |
+
| Train | 20,059 |
|
| 71 |
+
| Validation | 2,507 |
|
| 72 |
+
| Test | 2,508 |
|
| 73 |
+
| **Total** | 25,074 |
|
| 74 |
+
|
| 75 |
+
Splits follow an **80/10/10 ratio**.
|
| 76 |
+
|
| 77 |
+
---
|
| 78 |
+
|
| 79 |
+
## Languages
|
| 80 |
+
The dataset includes scientific publications written in:
|
| 81 |
+
|
| 82 |
+
- **Catalan (`ca`)**
|
| 83 |
+
- **Spanish (`es`)**
|
| 84 |
+
- **English (`en`)**
|
| 85 |
+
|
| 86 |
+
---
|
| 87 |
+
|
| 88 |
+
## Task
|
| 89 |
+
**Multiclass Scientific Text Classification**
|
| 90 |
+
|
| 91 |
+
Your model should predict the **Field of Study (FoS) Level 1** category from a scientific text snippet.
|
| 92 |
+
This dataset is suitable for:
|
| 93 |
+
|
| 94 |
+
- multilingual text classification
|
| 95 |
+
- scientific-domain NLP
|
| 96 |
+
- domain adaptation
|
| 97 |
+
- benchmarking multilingual LLMs (mBERT, XLM-R, LLaMA, etc.)
|
| 98 |
+
- zero-shot or few-shot evaluation
|
| 99 |
+
|
| 100 |
+
---
|
| 101 |
+
|
| 102 |
+
## Source
|
| 103 |
+
The labels correspond to **Level 1 Fields of Study from the Microsoft Academic Graph (MAG)** ontology.
|
| 104 |
+
|
| 105 |
+
Typical categories include (examples):
|
| 106 |
+
|
| 107 |
+
- Chemistry
|
| 108 |
+
- Physics
|
| 109 |
+
- Biology
|
| 110 |
+
- Computer Science
|
| 111 |
+
- Mathematics
|
| 112 |
+
- Medicine
|
| 113 |
+
- Social Sciences
|
| 114 |
+
- Engineering
|
| 115 |
+
- Earth Sciences
|
| 116 |
+
- Environmental Science
|
| 117 |
+
|
| 118 |
+
The exact label set matches the categories present in the processed data.
|
| 119 |
+
|
| 120 |
+
---
|
| 121 |
+
|
| 122 |
+
## Creation Process
|
| 123 |
+
1. Load publication metadata (title, abstract, language, FoS).
|
| 124 |
+
2. Clean and normalize text fields.
|
| 125 |
+
3. Randomly choose one of:
|
| 126 |
+
- title
|
| 127 |
+
- abstract
|
| 128 |
+
- title + abstract
|
| 129 |
+
4. Assign the MAG FoS L1 label.
|
| 130 |
+
5. Perform an 80/10/10 train-validation-test split using HuggingFace `datasets`.
|
| 131 |
+
|
| 132 |
+
---
|
| 133 |
+
|
| 134 |
+
## Usage
|
| 135 |
+
|
| 136 |
+
### Load the dataset
|
| 137 |
+
```python
|
| 138 |
+
from datasets import load_dataset
|
| 139 |
+
|
| 140 |
+
dataset = load_dataset("YOUR_USERNAME/YOUR_DATASET_NAME")
|
| 141 |
+
print(dataset["train"][0])
|
| 142 |
+
Example record
|
| 143 |
+
json
|
| 144 |
+
Copy code
|
| 145 |
+
{
|
| 146 |
+
"text": "Reactividad de CHI3 con radicales O... Las vías de abstracción...",
|
| 147 |
+
"label": "Physical chemistry",
|
| 148 |
+
"language": "es"
|
| 149 |
+
}
|