Update README.md
Browse files
README.md
CHANGED
|
@@ -26,17 +26,17 @@ How to use
|
|
| 26 |
Download data
|
| 27 |
Load to use with LangChain
|
| 28 |
|
| 29 |
-
|
| 30 |
pip install -qqq langchain sentence_transformers faiss-cpu huggingface_hub
|
| 31 |
import os
|
| 32 |
from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings
|
| 33 |
|
| 34 |
from langchain.vectorstores.faiss import FAISS
|
| 35 |
from huggingface_hub import snapshot_download
|
| 36 |
-
|
| 37 |
|
| 38 |
# download the vectorstore for the book you want
|
| 39 |
-
|
| 40 |
cache_dir="cfa_level_1_cache"
|
| 41 |
vectorstore = snapshot_download(repo_id="nickmuchi/CFA_Level_1_Text_Embeddings",
|
| 42 |
repo_type="dataset",
|
|
@@ -44,21 +44,26 @@ vectorstore = snapshot_download(repo_id="nickmuchi/CFA_Level_1_Text_Embeddings",
|
|
| 44 |
allow_patterns=f"books/{book}/*", # to download only the one book
|
| 45 |
cache_dir=cache_dir,
|
| 46 |
)
|
| 47 |
-
|
| 48 |
# get path to the `vectorstore` folder that you just downloaded
|
| 49 |
# we'll look inside the `cache_dir` for the folder we want
|
|
|
|
| 50 |
target_dir = f"cfa/cfa_level_1"
|
|
|
|
| 51 |
|
| 52 |
# Walk through the directory tree recursively
|
|
|
|
| 53 |
for root, dirs, files in os.walk(cache_dir):
|
| 54 |
# Check if the target directory is in the list of directories
|
| 55 |
if target_dir in dirs:
|
| 56 |
# Get the full path of the target directory
|
| 57 |
target_path = os.path.join(root, target_dir)
|
|
|
|
| 58 |
|
| 59 |
# load embeddings
|
| 60 |
# this is what was used to create embeddings for the text
|
| 61 |
|
|
|
|
| 62 |
embed_instruction = "Represent the financial paragraph for document retrieval: "
|
| 63 |
query_instruction = "Represent the question for retrieving supporting documents: "
|
| 64 |
|
|
@@ -80,4 +85,6 @@ search = docsearch.similarity_search(question, k=4)
|
|
| 80 |
for item in search:
|
| 81 |
print(item.page_content)
|
| 82 |
print(f"From page: {item.metadata['page']}")
|
| 83 |
-
print("---")
|
|
|
|
|
|
|
|
|
| 26 |
Download data
|
| 27 |
Load to use with LangChain
|
| 28 |
|
| 29 |
+
```
|
| 30 |
pip install -qqq langchain sentence_transformers faiss-cpu huggingface_hub
|
| 31 |
import os
|
| 32 |
from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings
|
| 33 |
|
| 34 |
from langchain.vectorstores.faiss import FAISS
|
| 35 |
from huggingface_hub import snapshot_download
|
| 36 |
+
```
|
| 37 |
|
| 38 |
# download the vectorstore for the book you want
|
| 39 |
+
```
|
| 40 |
cache_dir="cfa_level_1_cache"
|
| 41 |
vectorstore = snapshot_download(repo_id="nickmuchi/CFA_Level_1_Text_Embeddings",
|
| 42 |
repo_type="dataset",
|
|
|
|
| 44 |
allow_patterns=f"books/{book}/*", # to download only the one book
|
| 45 |
cache_dir=cache_dir,
|
| 46 |
)
|
| 47 |
+
```
|
| 48 |
# get path to the `vectorstore` folder that you just downloaded
|
| 49 |
# we'll look inside the `cache_dir` for the folder we want
|
| 50 |
+
```
|
| 51 |
target_dir = f"cfa/cfa_level_1"
|
| 52 |
+
```
|
| 53 |
|
| 54 |
# Walk through the directory tree recursively
|
| 55 |
+
```
|
| 56 |
for root, dirs, files in os.walk(cache_dir):
|
| 57 |
# Check if the target directory is in the list of directories
|
| 58 |
if target_dir in dirs:
|
| 59 |
# Get the full path of the target directory
|
| 60 |
target_path = os.path.join(root, target_dir)
|
| 61 |
+
```
|
| 62 |
|
| 63 |
# load embeddings
|
| 64 |
# this is what was used to create embeddings for the text
|
| 65 |
|
| 66 |
+
```
|
| 67 |
embed_instruction = "Represent the financial paragraph for document retrieval: "
|
| 68 |
query_instruction = "Represent the question for retrieving supporting documents: "
|
| 69 |
|
|
|
|
| 85 |
for item in search:
|
| 86 |
print(item.page_content)
|
| 87 |
print(f"From page: {item.metadata['page']}")
|
| 88 |
+
print("---")
|
| 89 |
+
|
| 90 |
+
```
|