Datasets:
mteb
/

Modalities:
Text
Formats:
json
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 8,668 Bytes
2de6ce8
0bc3b70
 
2de6ce8
0bc3b70
 
 
 
a9ed055
0bc3b70
 
a9ed055
0bc3b70
a9ed055
0bc3b70
 
 
 
 
 
a9ed055
02e82d1
854c055
f1b4261
854c055
f1b4261
854c055
f1b4261
854c055
f1b4261
854c055
f1b4261
 
 
 
 
 
 
 
 
 
 
 
 
854c055
f1b4261
 
 
 
 
 
 
d31f33a
f1b4261
d31f33a
854c055
 
 
 
 
 
f1b4261
 
 
 
 
 
854c055
 
 
 
f1b4261
854c055
f1b4261
854c055
 
 
 
 
 
 
f1b4261
854c055
f1b4261
854c055
f1b4261
854c055
f1b4261
854c055
 
 
 
 
 
 
 
 
 
 
f1b4261
854c055
f1b4261
854c055
f1b4261
854c055
f1b4261
854c055
f1b4261
 
 
854c055
f1b4261
854c055
f1b4261
854c055
f1b4261
854c055
f1b4261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc3b70
 
 
2de6ce8
0bc3b70
2de6ce8
0bc3b70
 
 
 
 
005aa02
0bc3b70
005aa02
0bc3b70
 
 
 
 
005aa02
0bc3b70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ed055
0bc3b70
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
---
annotations_creators:
- human-annotated
language:
- ara
- cmn
- deu
- eng
- fra
- ita
- pol
- rus
- spa
- tur
license: unknown
multilinguality: multilingual
source_datasets:
- mteb/sts22-crosslingual-sts
task_categories:
- sentence-similarity
task_ids:
- semantic-similarity-scoring
configs:
- config_name: ar
  data_files:
  - path: test/ar.jsonl.gz
    split: test
  - path: train/ar.jsonl.gz
    split: train
- config_name: de
  data_files:
  - path: test/de.jsonl.gz
    split: test
  - path: train/de.jsonl.gz
    split: train
- config_name: de-en
  data_files:
  - path: test/de-en.jsonl.gz
    split: test
  - path: train/de-en.jsonl.gz
    split: train
- config_name: de-fr
  data_files:
  - path: test/de-fr.jsonl.gz
    split: test
- config_name: de-pl
  data_files:
  - path: test/de-pl.jsonl.gz
    split: test
- config_name: default
  data_files:
  - split: test
    path: data/test.jsonl.gz
  - split: train
    path: data/train.jsonl.gz
- config_name: en
  data_files:
  - path: test/en.jsonl.gz
    split: test
  - path: train/en.jsonl.gz
    split: train
- config_name: es
  data_files:
  - path: test/es.jsonl.gz
    split: test
  - path: train/es.jsonl.gz
    split: train
- config_name: es-en
  data_files:
  - path: test/es-en.jsonl.gz
    split: test
- config_name: es-it
  data_files:
  - path: test/es-it.jsonl.gz
    split: test
- config_name: fr
  data_files:
  - path: test/fr.jsonl.gz
    split: test
  - path: train/fr.jsonl.gz
    split: train
- config_name: fr-pl
  data_files:
  - path: test/fr-pl.jsonl.gz
    split: test
- config_name: it
  data_files:
  - path: test/it.jsonl.gz
    split: test
- config_name: pl
  data_files:
  - path: test/pl.jsonl.gz
    split: test
  - path: train/pl.jsonl.gz
    split: train
- config_name: pl-en
  data_files:
  - path: test/pl-en.jsonl.gz
    split: test
- config_name: ru
  data_files:
  - path: test/ru.jsonl.gz
    split: test
- config_name: tr
  data_files:
  - path: test/tr.jsonl.gz
    split: test
  - path: train/tr.jsonl.gz
    split: train
- config_name: zh
  data_files:
  - path: test/zh.jsonl.gz
    split: test
- config_name: zh-en
  data_files:
  - path: test/zh-en.jsonl.gz
    split: test
dataset_info:
  features:
  - name: id
    dtype: string
  - name: score
    dtype: float64
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: lang
    dtype: string
  splits:
  - name: test
    num_examples: 3958
  - name: train
    num_examples: 4622
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->

<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
  <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">STS22.v2</h1>
  <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
  <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>

SemEval 2022 Task 8: Multilingual News Article Similarity. Version 2 filters updated on STS22 by removing pairs where one of entries contain empty sentences.

|               |                                             |
|---------------|---------------------------------------------|
| Task category | t2t                              |
| Domains       | News, Written                               |
| Reference     | https://competitions.codalab.org/competitions/33835 |


## How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

```python
import mteb

task = mteb.get_tasks(["STS22.v2"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```

<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). 

## Citation

If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).

```bibtex

@inproceedings{chen-etal-2022-semeval,
  address = {Seattle, United States},
  author = {Chen, Xi  and
Zeynali, Ali  and
Camargo, Chico  and
Fl{\"o}ck, Fabian  and
Gaffney, Devin  and
Grabowicz, Przemyslaw  and
Hale, Scott  and
Jurgens, David  and
Samory, Mattia},
  booktitle = {Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)},
  doi = {10.18653/v1/2022.semeval-1.155},
  editor = {Emerson, Guy  and
Schluter, Natalie  and
Stanovsky, Gabriel  and
Kumar, Ritesh  and
Palmer, Alexis  and
Schneider, Nathan  and
Singh, Siddharth  and
Ratan, Shyam},
  month = jul,
  pages = {1094--1106},
  publisher = {Association for Computational Linguistics},
  title = {{S}em{E}val-2022 Task 8: Multilingual news article similarity},
  url = {https://aclanthology.org/2022.semeval-1.155},
  year = {2022},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}
```

# Dataset Statistics
<details>
  <summary> Dataset Statistics</summary>

The following code contains the descriptive statistics from the task. These can also be obtained using:

```python
import mteb

task = mteb.get_task("STS22.v2")

desc_stats = task.metadata.descriptive_stats
```

```json
{
    "test": {
        "num_samples": 3958,
        "number_of_characters": 15936443,
        "unique_pairs": 3946,
        "min_sentence1_length": 16,
        "average_sentence1_len": 2167.554573016675,
        "max_sentence1_length": 47013,
        "unique_sentence1": 3920,
        "min_sentence2_length": 51,
        "average_sentence2_len": 1858.833249115715,
        "max_sentence2_length": 99998,
        "unique_sentence2": 3867,
        "min_score": 1.0,
        "avg_score": 2.494357419572234,
        "max_score": 4.0
    }
}
```

</details>

---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*