Datasets:
add daatset script and readme
Browse files- README.md +60 -1
- humaneval_infilling.py +80 -0
README.md
CHANGED
|
@@ -1,3 +1,62 @@
|
|
| 1 |
---
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
annotations_creators:
|
| 3 |
+
- expert-generated
|
| 4 |
+
language_creators:
|
| 5 |
+
- expert-generated
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
license:
|
| 9 |
+
- mit
|
| 10 |
+
multilinguality:
|
| 11 |
+
- monolingual
|
| 12 |
+
pretty_name: OpenAI HumanEval-Infilling
|
| 13 |
+
source_datasets:
|
| 14 |
+
- original
|
| 15 |
+
task_categories:
|
| 16 |
+
- text2text-generation
|
| 17 |
+
task_ids:
|
| 18 |
+
- text2text-generation-other-code-generation
|
| 19 |
---
|
| 20 |
+
|
| 21 |
+
# HumanEval-Infilling
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
## Dataset Description
|
| 25 |
+
|
| 26 |
+
- **Homepage:** https://github.com/openai/human-eval-infilling
|
| 27 |
+
- **Repository:** https://github.com/openai/human-eval-infilling
|
| 28 |
+
- **Paper:** https://arxiv.org/pdf/2207.14255
|
| 29 |
+
|
| 30 |
+
## Dataset Summary
|
| 31 |
+
|
| 32 |
+
[HumanEval-Infilling](https://github.com/openai/human-eval-infilling) is a benchmark for infilling tasks, derived from [HumanEval]() benchmark for the evaluation of code generation models.
|
| 33 |
+
|
| 34 |
+
## Dataset Structure
|
| 35 |
+
To load the dataset you need to specify a subset among the 5 exiting languages `[python, cpp, go, java, js]`. By default `python` is loaded.
|
| 36 |
+
|
| 37 |
+
```python
|
| 38 |
+
from datasets import load_dataset
|
| 39 |
+
ds = load_dataset("humaneval_infilling", "HumanEval-RandomSpanInfilling")
|
| 40 |
+
|
| 41 |
+
DatasetDict({
|
| 42 |
+
test: Dataset({
|
| 43 |
+
features: ['task_id', 'entry_point', 'prompt', 'suffix', 'canonical_solution', 'test'],
|
| 44 |
+
num_rows: 1640
|
| 45 |
+
})
|
| 46 |
+
})
|
| 47 |
+
```
|
| 48 |
+
By default `HumanEval-SingleLineInfilling` subset is loaded.
|
| 49 |
+
## Subsets
|
| 50 |
+
|
| 51 |
+
This dataset has 4 subsets: HumanEval-MultiLineInfilling, HumanEval-SingleLineInfilling, HumanEval-RandomSpanInfilling, HumanEval-RandomSpanInfillingLight.
|
| 52 |
+
The single-line, multi-line, random span infilling and its light version have 1033, 5815, 1640 and 164 tasks, respectively.
|
| 53 |
+
|
| 54 |
+
## Citation
|
| 55 |
+
|
| 56 |
+
```@article{bavarian2022efficient,
|
| 57 |
+
title={Efficient Training of Language Models to Fill in the Middle},
|
| 58 |
+
author={Bavarian, Mohammad and Jun, Heewoo and Tezak, Nikolas and Schulman, John and McLeavey, Christine and Tworek, Jerry and Chen, Mark},
|
| 59 |
+
journal={arXiv preprint arXiv:2207.14255},
|
| 60 |
+
year={2022}
|
| 61 |
+
}
|
| 62 |
+
```
|
humaneval_infilling.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import datasets
|
| 3 |
+
|
| 4 |
+
logger = datasets.logging.get_logger(__name__)
|
| 5 |
+
|
| 6 |
+
_CITATION = """\
|
| 7 |
+
@article{bavarian2022efficient,
|
| 8 |
+
title={Efficient Training of Language Models to Fill in the Middle},
|
| 9 |
+
author={Bavarian, Mohammad and Jun, Heewoo and Tezak, Nikolas and Schulman, John and McLeavey, Christine and Tworek, Jerry and Chen, Mark},
|
| 10 |
+
journal={arXiv preprint arXiv:2207.14255},
|
| 11 |
+
year={2022}
|
| 12 |
+
}
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
_DESCRIPTION = """\
|
| 16 |
+
An evaluation benchamrk for infilling tasks on HumanEval dataset for code generation.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
_SUBSETS = [ "MultiLineInfilling", "SingleLineInfilling", "RandomSpanInfilling", "RandomSpanInfillingLight" ]
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class HumanevalConfig(datasets.BuilderConfig):
|
| 23 |
+
"""BuilderConfig for HumanevalConfig."""
|
| 24 |
+
|
| 25 |
+
def __init__(
|
| 26 |
+
self,
|
| 27 |
+
subset,
|
| 28 |
+
**kwargs,
|
| 29 |
+
):
|
| 30 |
+
self.subset = subset
|
| 31 |
+
name = f"HumanEval-{subset}"
|
| 32 |
+
kwargs["name"] = name
|
| 33 |
+
super(HumanevalConfig, self).__init__(**kwargs)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class MultiPLE(datasets.GeneratorBasedBuilder):
|
| 37 |
+
BUILDER_CONFIG_CLASS = HumanevalConfig
|
| 38 |
+
|
| 39 |
+
BUILDER_CONFIGS = [
|
| 40 |
+
HumanevalConfig(
|
| 41 |
+
subset=subset,
|
| 42 |
+
version=datasets.Version("1.0.0"))
|
| 43 |
+
for subset in _SUBSETS
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
DEFAULT_CONFIG_NAME = "HumanEval-SingleLineInfilling"
|
| 47 |
+
|
| 48 |
+
def _info(self):
|
| 49 |
+
return datasets.DatasetInfo(
|
| 50 |
+
description=_DESCRIPTION,
|
| 51 |
+
license="MIT",
|
| 52 |
+
features = datasets.Features({'task_id': datasets.Value(dtype='string'),
|
| 53 |
+
'entry_point': datasets.Value(dtype='string'),
|
| 54 |
+
'prompt': datasets.Value(dtype='string'),
|
| 55 |
+
'suffix': datasets.Value(dtype='string'),
|
| 56 |
+
'canonical_solution': datasets.Value(dtype='string'),
|
| 57 |
+
'test': datasets.Value(dtype='string')}),
|
| 58 |
+
supervised_keys=None,
|
| 59 |
+
homepage="https://github.com/openai/human-eval-infilling",
|
| 60 |
+
citation=_CITATION
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
| 64 |
+
files = dl_manager.download(
|
| 65 |
+
f"data/{self.config.name}.jsonl"
|
| 66 |
+
)
|
| 67 |
+
return [
|
| 68 |
+
datasets.SplitGenerator(
|
| 69 |
+
name=datasets.Split.TEST,
|
| 70 |
+
gen_kwargs={
|
| 71 |
+
"filepath": files,
|
| 72 |
+
}
|
| 73 |
+
)
|
| 74 |
+
]
|
| 75 |
+
|
| 76 |
+
def _generate_examples(self, filepath):
|
| 77 |
+
with open(filepath) as f:
|
| 78 |
+
for id, line in enumerate(f):
|
| 79 |
+
row = json.loads(line)
|
| 80 |
+
yield id, row
|