kardosdrur commited on
Commit
f5222a3
·
verified ·
1 Parent(s): dc32021

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +6 -69
README.md CHANGED
@@ -2,87 +2,24 @@
2
  tags:
3
  - vicinity
4
  - vector-store
5
- license: mit
6
- task_categories:
7
- - summarization
8
- - translation
9
- - question-answering
10
- language:
11
- - sv
12
- - da
13
- - 'no'
14
- - nn
15
- - nb
16
- pretty_name: 'Scandinavian Wikipedai Vector Store '
17
- dataset_info:
18
- features:
19
- - name: id
20
- dtype: string
21
- - name: url
22
- dtype: string
23
- - name: title
24
- dtype: string
25
- - name: text
26
- dtype: string
27
- - name: language
28
- dtype: string
29
- splits:
30
- - name: train
31
- num_bytes: 4019184994
32
- num_examples: 3655450
33
- download_size: 2020534914
34
- dataset_size: 4019184994
35
- configs:
36
- - config_name: default
37
- data_files:
38
- - split: train
39
- path: data/train-*
40
  ---
41
 
42
- # Scandinavian Wikipedia Vector Store
43
 
44
- This dataset is a lightweight vector store of all Scandinavian Wikipedia articles created with the `static-similarity-mrl-multilingual-v1` embedding model.
45
- It contains the dataset with metadata, embeddings and a FAISS vector index for approximate nearest neighbour search.
46
 
47
- > This dataset was created using the [vicinity](https://github.com/MinishLab/vicinity) library, a lightweight nearest neighbors library with flexible backends.
48
- > It contains a vector space with 3655450 items.
49
 
50
  ## Usage
51
 
52
- Install Vicinity with backends, and sentence-transformers:
53
-
54
- ```bash
55
- pip install vicinity[all] sentence-transformers
56
- ```
57
-
58
- You can load the store using the following code:
59
 
60
  ```python
61
  from vicinity import Vicinity
62
-
63
- store = Vicinity.load_from_hub("kardosdrur/scandi-wiki-vector-store")
64
- ```
65
-
66
- After loading the dataset, you can use the `vicinity.query` method to find the nearest neighbors to a vector:
67
-
68
- ```python
69
- from sentence_transformers import SentenceTransformer
70
-
71
- encoder = SentenceTransformer("static-similarity-mrl-multilingual-v1")
72
- query_vector = encoder.encode("Ligger Hinnerup i Aarhus kommune?")
73
-
74
- results = store.query(query_vector, k=3)
75
  ```
76
 
77
- ## Reproducing
78
-
79
- To reproduce the same dataset, you can use the script supplied in the repo:
80
-
81
- ```bash
82
- pip install datasets vicinity[all] sentence-transformers tqdm
83
-
84
- python scripts/build_vector_store.py
85
- ```
86
 
87
  ## Configuration
88
 
 
2
  tags:
3
  - vicinity
4
  - vector-store
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
6
 
7
+ # Dataset Card for kardosdrur/scandi-wiki-vector-store
8
 
9
+ This dataset was created using the [vicinity](https://github.com/MinishLab/vicinity) library, a lightweight nearest neighbors library with flexible backends.
 
10
 
11
+ It contains a vector space with 3655450 items.
 
12
 
13
  ## Usage
14
 
15
+ You can load this dataset using the following code:
 
 
 
 
 
 
16
 
17
  ```python
18
  from vicinity import Vicinity
19
+ vicinity = Vicinity.load_from_hub("kardosdrur/scandi-wiki-vector-store")
 
 
 
 
 
 
 
 
 
 
 
 
20
  ```
21
 
22
+ After loading the dataset, you can use the `vicinity.query` method to find the nearest neighbors to a vector.
 
 
 
 
 
 
 
 
23
 
24
  ## Configuration
25