--- dataset_info: features: - name: messages dtype: string - name: prompt_length dtype: int64 - name: response_length dtype: int64 splits: - name: train num_bytes: 423667776 num_examples: 2000 download_size: 384009093 dataset_size: 423667776 configs: - config_name: default data_files: - split: train path: data/train-* --- # Synthetic Dataset: High Context, Low Generation ## Dataset Description This is a synthetic benchmark dataset designed to test LLM inference performance in **high-context, low-generation** scenarios. The dataset consists of 2,000 samples with randomly generated tokens that simulate real-world workloads where models process long input contexts but generate relatively short responses. ### Use Cases This dataset is ideal for benchmarking: - **Document analysis** with short answers - **Long-context Q&A** systems - **Information extraction** from large documents - **Prompt processing efficiency** and TTFT (Time-to-First-Token) optimization ### Dataset Characteristics - **Number of Samples**: 2,000 - **Prompt Length Distribution**: Normal distribution - Mean: 32,000 tokens - Standard deviation: 10,000 tokens - **Response Length Distribution**: Normal distribution - Mean: 200 tokens - Standard deviation: 50 tokens - **Tokenizer**: meta-llama/Llama-3.1-8B-Instruct ### Dataset Structure Each sample contains: - `prompt`: A sequence of randomly generated tokens (high context) - `prompt_length`: Number of tokens in the prompt - `response_length`: Number of tokens in the response ```python { 'prompt': str, 'prompt_length': int, 'response_length': int } ``` ### Token Generation - Tokens are randomly sampled from the vocabulary of the Llama-3.1-8B-Instruct tokenizer - Each sample is independently generated with lengths drawn from the specified distributions - The dataset ensures realistic token sequences while maintaining controlled length distributions ## Related Datasets This dataset is part of a suite of three synthetic benchmark datasets, each designed for different workload patterns: 1. **🔷 synthetic_dataset_high-low** (this dataset) - High context (32k tokens), low generation (200 tokens) - Focus: Prompt processing efficiency, TTFT optimization 2. **synthetic_dataset_mid-mid** - Medium context (1k tokens), medium generation (1k tokens) - Focus: Balanced workload, realistic API scenarios 3. **synthetic_dataset_low-mid** - Low context (10-120 tokens), medium generation (1.5k tokens) - Focus: Generation throughput, creative writing scenarios ## Benchmarking with vLLM This dataset is designed for use with the vLLM inference framework. The vLLM engine supports a `min_tokens` parameter, allowing you to pass `min_tokens=max_tokens=response_length` for each prompt. This ensures that the response length follows the defined distribution. ### Setup First, install vLLM and start the server: ```bash pip install vllm # Start the vLLM server vllm serve meta-llama/Llama-3.1-8B-Instruct ``` ### Usage Example ```python from datasets import load_dataset from openai import OpenAI # Load the dataset dataset = load_dataset("jonasluehrs-jaai/synthetic_dataset_high-low") # Initialize vLLM client (OpenAI-compatible API) client = OpenAI( base_url="http://localhost:8000/v1", api_key="token-abc123", ) # Use a sample from the dataset sample = dataset['train'][0] # Make a completion request with controlled response length completion = client.chat.completions.create( model="meta-llama/Llama-3.1-8B-Instruct", messages=[{"role": "user", "content": sample['prompt']}], max_tokens=sample['response_length'], extra_body={"min_tokens": sample['response_length']}, ) print(f"Generated {len(completion.choices[0].message.content)} characters") ``` For more information, see the [vLLM OpenAI-compatible server documentation](https://docs.vllm.ai/en/v0.8.3/serving/openai_compatible_server.html). ## License This dataset is released under the MIT License.