--- license: cc-by-nc-4.0 --- # SUM Parts: Benchmarking Part-Level Semantic Segmentation of Urban Meshes **CVPR 2025** [](https://tudelft3d.github.io/SUMParts/) [](https://github.com/tudelft3d/SUM-Parts-Benchmarks.git) [](https://youtu.be/CUi1Hf_GSlQ?si=AvghBzWzSCtXCllk) [](https://arxiv.org/abs/2503.15300) [](https://raw.githubusercontent.com/parametric-completion/paco/main/LICENSE) -----
**SUM Parts** provides part-level semantic segmentation of urban textured meshes, covering 2.5km² with 21 classes. From left to right: textured mesh, face-based and texture-based annotations. Classes include: | Class | Icon | Class | Icon | Class | Icon | |-------|------|-------|------|-------|------| | unclassified |  | terrain |  | high vegetation |  | | water |  | car |  | boat |  | | wall |  | roof surface |  | facade surface |  | | chimney |  | dormer |  | balcony |  | | roof installation |  | window |  | door |  | | low vegetation |  | impervious surface |  | road |  | | road marking |  | cycle lane |  | sidewalk |  | ## 📊 Benchmark Datasets Our benchmark datasets include textured meshes and semantic point clouds sampled on mesh surfaces using different methods. The textured meshes are stored in ASCII ply files, while semantic point clouds are stored in binary ply files to save space. This repository contains all data used in the [SUM Parts](https://openaccess.thecvf.com/content/CVPR2025/html/Gao_SUM_Parts_Benchmarking_Part-Level_Semantic_Segmentation_of_Urban_Meshes_CVPR_2025_paper.html) paper: 1. **Textured mesh data** (`mesh/`): - Subdivided into `train`, `validate`, and `test` sets - `train`/`validate`: textured meshes with mesh face labels + semantic texture masks - `test`: unlabeled data 2. **Sampled point clouds** (`pcl/`): - **Face-labeling track** (`face_labeling/`): - `face_cen_pcl/`: Face-centered - `random_pcl/`: Random - `possion_pcl/`: Poisson-disk - `texsp_pcl/`: Superpixel-based (proposed) - **Pixel-labeling track** (`pixel_labeling/`): - `random_pcl/`: Random - `possion_pcl/`: Poisson-disk - `texsp_pcl/`: Superpixel-based (proposed) - All point clouds follow the same `train`/`validate`/`test` split as meshes, with `test` being unlabeled 3. **Example data** (`demo/`): - Single examples per data type from (1) and (2) ### Semantic textured meshes The semantic label types of textured meshes are defined in the ply header via `comment label` and `comment texlabel`, while face semantic labels are stored in the ply file as `property int label`. Texture labels are saved in semantic texture mask images named `mask_texturefilename.png` or `full_mask_texturefilename.png`, where the former includes only texture semantic information and the latter adds face semantic information converted to texture semantics. Different colors can be mapped to semantic categories based on header definitions. Below is a ply file header example: ``` ply format ascii 1.0 comment TextureFile Tile_+1991_+2695_0.jpg comment label 0 unclassified comment label 1 terrain comment label 2 high_vegetation comment label 3 facade_surface comment label 4 water comment label 5 car comment label 6 boat comment label 7 roof_surface comment label 8 chimney comment label 9 dormer comment label 10 balcony comment label 11 roof_installation comment label 12 wall comment texlabel 13 window 100 100 255 comment texlabel 14 door 150 30 60 comment texlabel 15 low_vegetation 200 255 0 comment texlabel 16 impervious_surface 100 150 150 comment texlabel 17 road 200 200 200 comment texlabel 18 road_marking 150 100 150 comment texlabel 19 cycle_lane 255 85 127 comment texlabel 20 sidewalk 255 255 170 element vertex 54890 property float x property float y property float z element face 108322 property list uchar int vertex_indices property list uchar float texcoord property float r property float g property float b property float nx property float ny property float nz property int label property int texnumber end_header ``` Below are examples of texture mask images. In order: the original texture image, the texture image with semantic pixel labels, and the full-semantic texture image incorporating face semantic information.