Update files from the datasets library (from 1.16.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.16.0
- README.md +1 -0
- md_gender_bias.py +62 -38
README.md
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
---
|
|
|
|
| 2 |
annotations_creators:
|
| 3 |
convai2_inferred:
|
| 4 |
- machine-generated
|
|
|
|
| 1 |
---
|
| 2 |
+
pretty_name: Multi-Dimensional Gender Bias Classification
|
| 3 |
annotations_creators:
|
| 4 |
convai2_inferred:
|
| 5 |
- machine-generated
|
md_gender_bias.py
CHANGED
|
@@ -16,7 +16,6 @@
|
|
| 16 |
|
| 17 |
|
| 18 |
import json
|
| 19 |
-
import os
|
| 20 |
|
| 21 |
import datasets
|
| 22 |
|
|
@@ -299,7 +298,8 @@ class MdGenderBias(datasets.GeneratorBasedBuilder):
|
|
| 299 |
|
| 300 |
def _split_generators(self, dl_manager):
|
| 301 |
"""Returns SplitGenerators."""
|
| 302 |
-
|
|
|
|
| 303 |
if self.config.name == "gendered_words":
|
| 304 |
return [
|
| 305 |
datasets.SplitGenerator(
|
|
@@ -307,9 +307,10 @@ class MdGenderBias(datasets.GeneratorBasedBuilder):
|
|
| 307 |
gen_kwargs={
|
| 308 |
"filepath": None,
|
| 309 |
"filepath_pair": (
|
| 310 |
-
|
| 311 |
-
|
| 312 |
),
|
|
|
|
| 313 |
},
|
| 314 |
)
|
| 315 |
]
|
|
@@ -318,8 +319,9 @@ class MdGenderBias(datasets.GeneratorBasedBuilder):
|
|
| 318 |
datasets.SplitGenerator(
|
| 319 |
name=f"yob{yob}",
|
| 320 |
gen_kwargs={
|
| 321 |
-
"filepath":
|
| 322 |
"filepath_pair": None,
|
|
|
|
| 323 |
},
|
| 324 |
)
|
| 325 |
for yob in range(1880, 2019)
|
|
@@ -329,8 +331,9 @@ class MdGenderBias(datasets.GeneratorBasedBuilder):
|
|
| 329 |
datasets.SplitGenerator(
|
| 330 |
name=datasets.Split.TRAIN,
|
| 331 |
gen_kwargs={
|
| 332 |
-
"filepath":
|
| 333 |
"filepath_pair": None,
|
|
|
|
| 334 |
},
|
| 335 |
)
|
| 336 |
]
|
|
@@ -339,8 +342,9 @@ class MdGenderBias(datasets.GeneratorBasedBuilder):
|
|
| 339 |
datasets.SplitGenerator(
|
| 340 |
name=spl,
|
| 341 |
gen_kwargs={
|
| 342 |
-
"filepath":
|
| 343 |
"filepath_pair": None,
|
|
|
|
| 344 |
},
|
| 345 |
)
|
| 346 |
for spl, fname in _CONF_FILES[self.config.name].items()
|
|
@@ -352,45 +356,62 @@ class MdGenderBias(datasets.GeneratorBasedBuilder):
|
|
| 352 |
gen_kwargs={
|
| 353 |
"filepath": None,
|
| 354 |
"filepath_pair": (
|
| 355 |
-
|
| 356 |
-
|
| 357 |
),
|
|
|
|
| 358 |
},
|
| 359 |
)
|
| 360 |
for spl, (fname_1, fname_2) in _CONF_FILES[self.config.name].items()
|
| 361 |
]
|
| 362 |
|
| 363 |
-
def _generate_examples(self, filepath, filepath_pair):
|
| 364 |
if self.config.name == "gendered_words":
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
yield id_, {
|
| 369 |
"word_masculine": l_m.strip(),
|
| 370 |
"word_feminine": l_f.strip(),
|
| 371 |
}
|
|
|
|
| 372 |
elif self.config.name == "name_genders":
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
"name": name,
|
| 378 |
-
"assigned_gender": g,
|
| 379 |
-
"count": int(ct),
|
| 380 |
-
}
|
| 381 |
-
elif "_inferred" in self.config.name:
|
| 382 |
-
with open(filepath_pair[0], encoding="utf-8") as f_b:
|
| 383 |
-
if "yelp" in self.config.name:
|
| 384 |
-
for id_, line_b in enumerate(f_b):
|
| 385 |
-
text_b, label_b, score_b = line_b.split("\t")
|
| 386 |
yield id_, {
|
| 387 |
-
"
|
| 388 |
-
"
|
| 389 |
-
"
|
| 390 |
}
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 394 |
text_b, label_b, score_b = line_b.split("\t")
|
| 395 |
text_t, label_t, score_t = line_t.split("\t")
|
| 396 |
yield id_, {
|
|
@@ -400,10 +421,13 @@ class MdGenderBias(datasets.GeneratorBasedBuilder):
|
|
| 400 |
"ternary_label": label_t,
|
| 401 |
"ternary_score": float(score_t.strip()),
|
| 402 |
}
|
|
|
|
| 403 |
else:
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
example["turker_gender"]
|
| 409 |
-
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
import json
|
|
|
|
| 19 |
|
| 20 |
import datasets
|
| 21 |
|
|
|
|
| 298 |
|
| 299 |
def _split_generators(self, dl_manager):
|
| 300 |
"""Returns SplitGenerators."""
|
| 301 |
+
archive = dl_manager.download(_URL)
|
| 302 |
+
data_dir = "data_to_release"
|
| 303 |
if self.config.name == "gendered_words":
|
| 304 |
return [
|
| 305 |
datasets.SplitGenerator(
|
|
|
|
| 307 |
gen_kwargs={
|
| 308 |
"filepath": None,
|
| 309 |
"filepath_pair": (
|
| 310 |
+
data_dir + "/" + "word_list/male_word_file.txt",
|
| 311 |
+
data_dir + "/" + "word_list/female_word_file.txt",
|
| 312 |
),
|
| 313 |
+
"files": dl_manager.iter_archive(archive),
|
| 314 |
},
|
| 315 |
)
|
| 316 |
]
|
|
|
|
| 319 |
datasets.SplitGenerator(
|
| 320 |
name=f"yob{yob}",
|
| 321 |
gen_kwargs={
|
| 322 |
+
"filepath": data_dir + "/" + f"names/yob{yob}.txt",
|
| 323 |
"filepath_pair": None,
|
| 324 |
+
"files": dl_manager.iter_archive(archive),
|
| 325 |
},
|
| 326 |
)
|
| 327 |
for yob in range(1880, 2019)
|
|
|
|
| 331 |
datasets.SplitGenerator(
|
| 332 |
name=datasets.Split.TRAIN,
|
| 333 |
gen_kwargs={
|
| 334 |
+
"filepath": data_dir + "/" + "new_data/data.jsonl",
|
| 335 |
"filepath_pair": None,
|
| 336 |
+
"files": dl_manager.iter_archive(archive),
|
| 337 |
},
|
| 338 |
)
|
| 339 |
]
|
|
|
|
| 342 |
datasets.SplitGenerator(
|
| 343 |
name=spl,
|
| 344 |
gen_kwargs={
|
| 345 |
+
"filepath": data_dir + "/" + fname,
|
| 346 |
"filepath_pair": None,
|
| 347 |
+
"files": dl_manager.iter_archive(archive),
|
| 348 |
},
|
| 349 |
)
|
| 350 |
for spl, fname in _CONF_FILES[self.config.name].items()
|
|
|
|
| 356 |
gen_kwargs={
|
| 357 |
"filepath": None,
|
| 358 |
"filepath_pair": (
|
| 359 |
+
data_dir + "/" + fname_1,
|
| 360 |
+
data_dir + "/" + fname_2,
|
| 361 |
),
|
| 362 |
+
"files": dl_manager.iter_archive(archive),
|
| 363 |
},
|
| 364 |
)
|
| 365 |
for spl, (fname_1, fname_2) in _CONF_FILES[self.config.name].items()
|
| 366 |
]
|
| 367 |
|
| 368 |
+
def _generate_examples(self, filepath, filepath_pair, files):
|
| 369 |
if self.config.name == "gendered_words":
|
| 370 |
+
male_data, female_data = None, None
|
| 371 |
+
for path, f in files:
|
| 372 |
+
if path == filepath_pair[0]:
|
| 373 |
+
male_data = f.read().decode("utf-8").splitlines()
|
| 374 |
+
elif path == filepath_pair[1]:
|
| 375 |
+
female_data = f.read().decode("utf-8").splitlines()
|
| 376 |
+
if male_data is not None and female_data is not None:
|
| 377 |
+
for id_, (l_m, l_f) in enumerate(zip(male_data, female_data)):
|
| 378 |
yield id_, {
|
| 379 |
"word_masculine": l_m.strip(),
|
| 380 |
"word_feminine": l_f.strip(),
|
| 381 |
}
|
| 382 |
+
break
|
| 383 |
elif self.config.name == "name_genders":
|
| 384 |
+
for path, f in files:
|
| 385 |
+
if path == filepath:
|
| 386 |
+
for id_, line in enumerate(f):
|
| 387 |
+
name, g, ct = line.decode("utf-8").strip().split(",")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 388 |
yield id_, {
|
| 389 |
+
"name": name,
|
| 390 |
+
"assigned_gender": g,
|
| 391 |
+
"count": int(ct),
|
| 392 |
}
|
| 393 |
+
break
|
| 394 |
+
elif "_inferred" in self.config.name:
|
| 395 |
+
if "yelp" in self.config.name:
|
| 396 |
+
for path, f in files:
|
| 397 |
+
if path == filepath_pair[0]:
|
| 398 |
+
for id_, line_b in enumerate(f):
|
| 399 |
+
text_b, label_b, score_b = line_b.decode("utf-8").split("\t")
|
| 400 |
+
yield id_, {
|
| 401 |
+
"text": text_b,
|
| 402 |
+
"binary_label": label_b,
|
| 403 |
+
"binary_score": float(score_b.strip()),
|
| 404 |
+
}
|
| 405 |
+
break
|
| 406 |
+
else:
|
| 407 |
+
binary_data, ternary_data = None, None
|
| 408 |
+
for path, f in files:
|
| 409 |
+
if path == filepath_pair[0]:
|
| 410 |
+
binary_data = f.read().decode("utf-8").splitlines()
|
| 411 |
+
elif path == filepath_pair[1]:
|
| 412 |
+
ternary_data = f.read().decode("utf-8").splitlines()
|
| 413 |
+
if binary_data is not None and ternary_data is not None:
|
| 414 |
+
for id_, (line_b, line_t) in enumerate(zip(binary_data, ternary_data)):
|
| 415 |
text_b, label_b, score_b = line_b.split("\t")
|
| 416 |
text_t, label_t, score_t = line_t.split("\t")
|
| 417 |
yield id_, {
|
|
|
|
| 421 |
"ternary_label": label_t,
|
| 422 |
"ternary_score": float(score_t.strip()),
|
| 423 |
}
|
| 424 |
+
break
|
| 425 |
else:
|
| 426 |
+
for path, f in files:
|
| 427 |
+
if path == filepath:
|
| 428 |
+
for id_, line in enumerate(f):
|
| 429 |
+
example = json.loads(line.decode("utf-8").strip())
|
| 430 |
+
if "turker_gender" in example and example["turker_gender"] is None:
|
| 431 |
+
example["turker_gender"] = "no answer"
|
| 432 |
+
yield id_, example
|
| 433 |
+
break
|