breast-cancer-africa-adjusted-dataset / breast_cancer_african_adjusted.py
Kossisoroyce's picture
Initial upload: African physiognomy-adjusted breast cancer dataset
bf29a09 verified
"""Breast Cancer Wisconsin Dataset: African Physiognomy Adjusted"""
import csv
import datasets
_CITATION = """\
@misc{udodi2025breast,
title={Addressing Representation Bias in Breast Cancer Datasets: A Physiognomy-Informed Approach for African Populations},
author={Kossiso Udodi Royce},
year={2025},
publisher={Electric Sheep Africa},
url={https://huggingface.co/datasets/ElectricSheepAfrica/breast-cancer-african-adjusted}
}
"""
_DESCRIPTION = """\
This dataset addresses representation bias in medical AI by providing an African physiognomy-adjusted
version of the classic Wisconsin Breast Cancer Dataset. The adjustment methodology systematically
modifies cellular morphology features to better reflect documented physiological differences in
African populations.
Key adjustments include:
- Higher breast density (5-8% increase in size/texture features)
- Enhanced irregularity (12-19% increase in concavity/fractal features)
- Reduced boundary smoothness (10-12% decrease in smoothness/symmetry)
The dataset contains 569 samples with 30 morphological features from Fine Needle Aspirate (FNA)
samples, classified as Malignant (M) or Benign (B).
"""
_HOMEPAGE = "https://huggingface.co/datasets/ElectricSheepAfrica/breast-cancer-african-adjusted"
_LICENSE = "CC BY 4.0"
_URLS = {
"african_adjusted": "breast_cancer_african_adjusted.csv",
"wisconsin_breast_cancer_dataset": "breast_cancer_original.csv",
}
class BreastCancerAfricanAdjusted(datasets.GeneratorBasedBuilder):
"""Breast Cancer Wisconsin Dataset with African Physiognomy Adjustments"""
VERSION = datasets.Version("1.0.2")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="african_adjusted",
version=VERSION,
description="African physiognomy-adjusted breast cancer dataset",
),
datasets.BuilderConfig(
name="wisconsin_breast_cancer_dataset",
version=VERSION,
description="Original Wisconsin breast cancer dataset",
),
]
DEFAULT_CONFIG_NAME = "african_adjusted"
def _info(self):
features = datasets.Features({
"id": datasets.Value("float64"),
"diagnosis": datasets.Value("string"),
"radius_mean": datasets.Value("float64"),
"texture_mean": datasets.Value("float64"),
"perimeter_mean": datasets.Value("float64"),
"area_mean": datasets.Value("float64"),
"smoothness_mean": datasets.Value("float64"),
"compactness_mean": datasets.Value("float64"),
"concavity_mean": datasets.Value("float64"),
"concave points_mean": datasets.Value("float64"),
"symmetry_mean": datasets.Value("float64"),
"fractal_dimension_mean": datasets.Value("float64"),
"radius_se": datasets.Value("float64"),
"texture_se": datasets.Value("float64"),
"perimeter_se": datasets.Value("float64"),
"area_se": datasets.Value("float64"),
"smoothness_se": datasets.Value("float64"),
"compactness_se": datasets.Value("float64"),
"concavity_se": datasets.Value("float64"),
"concave points_se": datasets.Value("float64"),
"symmetry_se": datasets.Value("float64"),
"fractal_dimension_se": datasets.Value("float64"),
"radius_worst": datasets.Value("float64"),
"texture_worst": datasets.Value("float64"),
"perimeter_worst": datasets.Value("float64"),
"area_worst": datasets.Value("float64"),
"smoothness_worst": datasets.Value("float64"),
"compactness_worst": datasets.Value("float64"),
"concavity_worst": datasets.Value("float64"),
"concave points_worst": datasets.Value("float64"),
"symmetry_worst": datasets.Value("float64"),
"fractal_dimension_worst": datasets.Value("float64"),
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = _URLS[self.config.name]
data_file = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_file,
"split": "train",
},
),
]
def _generate_examples(self, filepath, split):
with open(filepath, encoding="utf-8") as f:
reader = csv.DictReader(f)
for key, row in enumerate(reader):
# Convert numeric fields
for field in row:
if field != "diagnosis":
try:
row[field] = float(row[field])
except (ValueError, TypeError):
row[field] = None
yield key, row