--- annotations_creators: - machine-generated language: - en license: cc-by-4.0 tags: - medical - rag - synthetic-qa - lay-symptom pretty_name: MediMaven-QA v1.0 size_categories: - 100K ![License](https://img.shields.io/badge/CC%20BY-4.0-lightgrey?logo=creativecommons) ![Language](https://img.shields.io/badge/lang-EN-blue) ![Downloads](https://img.shields.io/endpoint?url=https://huggingface.co/datasets/dranreb1660/medimaven-qa-data/badge) # 🩺 MediMaven-QA v1.0 **MediMaven-QA** is a *chunk-level, citation-preserving* medical question-answer corpus purpose-built for **Retrieval-Augmented Generation (RAG)**. It bridges everyday **lay-symptom narratives** with trustworthy **clinical content** from curated web sources. ## πŸ“¦ Dataset Contents | Config (`name`) | Rows | What it holds | Typical use-case | |----------------------|------:|---------------|------------------| | `chunks` | 70 248 | 200-token, sentence-aware context windows with rich metadata (`id`, `url`, `title`, `section`, `source`, `n_token`, `text`) | RAG context store / retriever training | | `qa_wide` | 70 018 | *List-of-dict* QA per `chunk_id`
β†’ single row may have β‰₯1 QA pair | Fast retrieval + generation, keeps chunk linkage | | `qa_long` | 143 221 | Fully exploded (`chunk_id`, `question`, `answer`) | Classic supervised QA fine-tuning or eval | > ⚠️ **Disclaimer** β€” This corpus is for *research & benchmarking only*. > It is **not** a diagnostic tool and should not be used in clinical workflows. ## πŸš€ Quick Load ```python from datasets import load_dataset # pick one of these configs qa_long = load_dataset("bernard-kyei/medimaven-qa-data", "qa_long", split="train") qa_long = load_dataset("bernard-kyei/medimaven-qa-data", "qa_long", split="train") # accompany with chunks to get contexts chunks = load_dataset("bernard-kyei/medimaven-qa-data", "kb_chunks", split="train") print(qa_long[0]["question"]) print(qa_long[0]["answer"]) ``` # πŸ› οΈ Generation Pipeline | Stage | Tooling | Notes | |---------------------|---------------------------------------------|-------------------------------------| | 1️⃣ **Crawl** | Scrapy + Splash | Mayo Clinic, NHS.uk, WebMD, Cleveland Clinic (public-domain / permissive T\&Cs) | | 2️⃣ **Chunk** | spaCy sentenciser | β‰ˆ200 tokens / chunk; keeps heading context | | 3️⃣ **Synthetic QA** | GPT-4o-mini (`gpt-4o-mini-2024-05-preview`) | β€’ 1 concise lay Q
β€’ 1 symptom-narrative Q
β†’ cost **\$40** for 143 k pairs | | 4️⃣ **Versioning** | Weights & Biases Artifacts | `kb_chunks`, `qa_wide` `qa_long` | # πŸ“Š Key Stats | Metric | Value | | ----------------------- | ---------: | | Total context tokens | **27.4 M** | | Avg. tokens / chunk | 390 | | Unique host domains | 4 | | QA pairs / chunk (mean) | 2.0 | | % symptom-narrative Qs | 51 % | # 🧩 Dataset Structure (Arrow schema)
click to expand β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ chunks β”‚ qa_wide / qa_long β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ id: string β”‚ chunk_id: string β”‚ β”‚ url: string β”‚ question: string β”‚ β”‚ title: str β”‚ answer: string β”‚ β”‚ section:str β”‚ -- qa_wide only -- β”‚ β”‚ source:str β”‚ qa: list β”‚ β”‚ text: str β”‚ β”‚ β”‚ n_token:int β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
# πŸ“œ Citation ```bibtex @misc{KyeiMensah2025MediMavenQA, author = {Kyei-Mensah, Bernard}, title = {MediMaven-QA: A Citation-Preserving Medical Q\A Dataset with Symptom Narratives}, year = {2025}, url = {https://huggingface.co/datasets/dranreb1660/medimaven-qa-data}, note = {Version 1.0} } ``` # πŸ—’οΈ Changelog | Date (UTC) | Version | Highlights | | -------------- | ------- | ---------------------------------------------------------------------------------------- | | **2025-05-27** | `v1.0` | β€’ Sentence-aware chunking
β€’ 143 k synthetic QA pairs
β€’ Cost optimisation to \$25 |