nodes: 8 tasks_per_node: 8 cpus_per_task: 12 mem_per_gpu: 200G tag: diving48-vitl16-32x4x3 eval_name: video_classification_frozen folder: /your_folder/evals/vitl/diving48 resume_checkpoint: true experiment: classifier: num_probe_blocks: 4 num_heads: 16 data: dataset_type: VideoDataset dataset_train: /your_data_dir/diving48/annotations/Diving48_train_paths.csv dataset_val: /your_data_dir/diving48/annotations/Diving48_test_paths.csv num_classes: 48 resolution: 256 frames_per_clip: 32 frame_step: 2 num_segments: 4 num_views_per_segment: 3 optimization: use_pos_embed: false num_epochs: 100 batch_size: 2 use_bfloat16: true multihead_kwargs: - weight_decay: 0.8 final_weight_decay: 0.8 lr: 0.001 start_lr: 0.001 final_lr: 0.0 warmup: 0. - weight_decay: 0.8 final_weight_decay: 0.8 lr: 0.0003 start_lr: 0.0003 final_lr: 0.0 warmup: 0. - weight_decay: 0.8 final_weight_decay: 0.8 lr: 0.0001 start_lr: 0.0001 final_lr: 0.0 warmup: 0. model_kwargs: checkpoint: /your_vjepa2_checkpoints/vitl.pt module_name: evals.video_classification_frozen.modelcustom.vit_encoder_multiclip_multilevel wrapper_kwargs: max_frames: 128 use_pos_embed: false out_layers: [17, 19, 21, 23] pretrain_kwargs: encoder: model_name: vit_large checkpoint_key: target_encoder tubelet_size: 2 patch_size: 16 uniform_power: true use_rope: true