|  | """Medical Prescription OCR Dataset""" | 
					
						
						|  |  | 
					
						
						|  | import json | 
					
						
						|  | import os | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  | from PIL import Image | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = """ | 
					
						
						|  | Medical Prescription OCR Dataset - A collection of synthetic handwritten medical prescriptions | 
					
						
						|  | with structured annotations for training OCR models. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _CITATION = """ | 
					
						
						|  | @dataset{shrivastava2024medicalprescription, | 
					
						
						|  | author = {Chinmay Shrivastava}, | 
					
						
						|  | title = {Medical Prescription OCR Dataset}, | 
					
						
						|  | year = {2024}, | 
					
						
						|  | publisher = {Hugging Face}, | 
					
						
						|  | url = {https://huggingface.co/datasets/chinmays18/medical-prescription-dataset} | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MedicalPrescriptionDataset(datasets.GeneratorBasedBuilder): | 
					
						
						|  | """Medical Prescription OCR Dataset""" | 
					
						
						|  |  | 
					
						
						|  | VERSION = datasets.Version("1.0.0") | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=_DESCRIPTION, | 
					
						
						|  | features=datasets.Features({ | 
					
						
						|  | "image": datasets.Image(), | 
					
						
						|  | "ground_truth": datasets.Value("string"), | 
					
						
						|  | }), | 
					
						
						|  | citation=_CITATION, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager): | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.TRAIN, | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "images_path": "train/images", | 
					
						
						|  | "annotations_path": "train/annotations", | 
					
						
						|  | }, | 
					
						
						|  | ), | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.VALIDATION, | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "images_path": "val/images", | 
					
						
						|  | "annotations_path": "val/annotations", | 
					
						
						|  | }, | 
					
						
						|  | ), | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.TEST, | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "images_path": "test/images", | 
					
						
						|  | "annotations_path": "test/annotations", | 
					
						
						|  | }, | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, images_path, annotations_path): | 
					
						
						|  |  | 
					
						
						|  | image_files = sorted([f for f in os.listdir(images_path) if f.endswith('.png')]) | 
					
						
						|  |  | 
					
						
						|  | for idx, image_file in enumerate(image_files): | 
					
						
						|  |  | 
					
						
						|  | base_name = os.path.splitext(image_file)[0] | 
					
						
						|  | annotation_file = f"{base_name}.json" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image_path = os.path.join(images_path, image_file) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | annotation_path = os.path.join(annotations_path, annotation_file) | 
					
						
						|  | with open(annotation_path, 'r') as f: | 
					
						
						|  | annotation = json.load(f) | 
					
						
						|  |  | 
					
						
						|  | yield idx, { | 
					
						
						|  | "image": image_path, | 
					
						
						|  | "ground_truth": annotation["ground_truth"], | 
					
						
						|  | } | 
					
						
						|  |  |