Luca Colomba
commited on
Commit
·
58b19ed
1
Parent(s):
1abae0d
Uploaded create_sample_submission.py
Browse files- create_sample_submission.py +66 -0
create_sample_submission.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import h5py
|
| 4 |
+
|
| 5 |
+
from trimesh.voxel.runlength import dense_to_brle
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from collections import defaultdict
|
| 8 |
+
|
| 9 |
+
from typing import Any, Union, Dict, Literal
|
| 10 |
+
from numpy.typing import NDArray
|
| 11 |
+
|
| 12 |
+
# class RandomModel:
|
| 13 |
+
# def __init__(self, shape):
|
| 14 |
+
# self.shape = shape
|
| 15 |
+
# return
|
| 16 |
+
|
| 17 |
+
# def __call__(self, input):
|
| 18 |
+
# # input is ignored, just generate some random predictions
|
| 19 |
+
# return np.random.randint(0, 2, size=self.shape, dtype=bool)
|
| 20 |
+
|
| 21 |
+
class FixedModel:
|
| 22 |
+
def __init__(self, shape) -> None:
|
| 23 |
+
self.shape = shape
|
| 24 |
+
return
|
| 25 |
+
|
| 26 |
+
def __call__(self, input) -> Any:
|
| 27 |
+
# input is ignored, just generate a mask filled with zeros, with fixed pixels set to 1
|
| 28 |
+
mask = np.zeros(self.shape, dtype=bool)
|
| 29 |
+
mask[100:250, 100:250] = True
|
| 30 |
+
return mask
|
| 31 |
+
|
| 32 |
+
def retrieve_validation_fold(path: Union[str, Path]) -> Dict[str, NDArray]:
|
| 33 |
+
result = defaultdict(dict)
|
| 34 |
+
with h5py.File(path, 'r') as fp:
|
| 35 |
+
for uuid, values in fp.items():
|
| 36 |
+
if values.attrs['fold'] != 0:
|
| 37 |
+
continue
|
| 38 |
+
|
| 39 |
+
result[uuid]['post'] = values['post_fire'][...]
|
| 40 |
+
# result[uuid]['pre'] = values['pre_fire'][...]
|
| 41 |
+
|
| 42 |
+
return dict(result)
|
| 43 |
+
|
| 44 |
+
def compute_submission_mask(id: str, mask: NDArray):
|
| 45 |
+
brle = dense_to_brle(mask.astype(bool).flatten())
|
| 46 |
+
return {"id": id, "rle_mask": brle, "index": np.arange(len(brle))}
|
| 47 |
+
|
| 48 |
+
if __name__ == '__main__':
|
| 49 |
+
validation_fold = retrieve_validation_fold('train_eval.hdf5')
|
| 50 |
+
|
| 51 |
+
# use a list to accumulate results
|
| 52 |
+
result = []
|
| 53 |
+
# instantiate the model
|
| 54 |
+
model = FixedModel(shape=(512, 512))
|
| 55 |
+
for uuid in validation_fold:
|
| 56 |
+
input_images = validation_fold[uuid]
|
| 57 |
+
|
| 58 |
+
# perform the prediction
|
| 59 |
+
predicted = model(input_images)
|
| 60 |
+
# convert the prediction in RLE format
|
| 61 |
+
encoded_prediction = compute_submission_mask(uuid, predicted)
|
| 62 |
+
result.append(pd.DataFrame(encoded_prediction))
|
| 63 |
+
|
| 64 |
+
# concatenate all dataframes
|
| 65 |
+
submission_df = pd.concat(result)
|
| 66 |
+
submission_df.to_csv('predictions.csv', index=False)
|