first
Browse files- mediasum.py +124 -0
mediasum.py
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
import datasets
|
| 5 |
+
from datasets.tasks import TextClassification
|
| 6 |
+
|
| 7 |
+
_CITATION = None
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
_DESCRIPTION = """
|
| 11 |
+
MediaSum dataset for summarization.
|
| 12 |
+
From paper: "MediaSum: A Large-scale Media Interview Dataset for Dialogue Summarization" by C. Zhu et al."
|
| 13 |
+
|
| 14 |
+
"""
|
| 15 |
+
_CITATION = """\
|
| 16 |
+
@article{zhu2021mediasum,
|
| 17 |
+
title={MediaSum: A Large-scale Media Interview Dataset for Dialogue Summarization},
|
| 18 |
+
author={Zhu, Chenguang and Liu, Yang and Mei, Jie and Zeng, Michael},
|
| 19 |
+
journal={arXiv preprint arXiv:2103.06410},
|
| 20 |
+
year={2021}
|
| 21 |
+
}
|
| 22 |
+
"""
|
| 23 |
+
_ABSTRACT = "summary"
|
| 24 |
+
_ARTICLE = "utt"
|
| 25 |
+
|
| 26 |
+
class MediaSumSummarizationConfig(datasets.BuilderConfig):
|
| 27 |
+
"""BuilderConfig for MediaSumSummarization."""
|
| 28 |
+
|
| 29 |
+
def __init__(self, **kwargs):
|
| 30 |
+
"""BuilderConfig for MediaSumSummarization.
|
| 31 |
+
Args:
|
| 32 |
+
**kwargs: keyword arguments forwarded to super.
|
| 33 |
+
"""
|
| 34 |
+
super(MediaSumSummarizationConfig, self).__init__(**kwargs)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class MediaSumSummarizationDataset(datasets.GeneratorBasedBuilder):
|
| 38 |
+
"""MediaSumSummarization Dataset."""
|
| 39 |
+
|
| 40 |
+
_TRAIN_FILE = "train_data.zip"
|
| 41 |
+
_VAL_FILE = "val_data.zip"
|
| 42 |
+
_TEST_FILE = "test_data.zip"
|
| 43 |
+
|
| 44 |
+
BUILDER_CONFIGS = [
|
| 45 |
+
MediaSumSummarizationConfig(
|
| 46 |
+
name="newline",
|
| 47 |
+
version=datasets.Version("1.0.0"),
|
| 48 |
+
description="MediaSum dataset for summarization, concat sections",
|
| 49 |
+
),
|
| 50 |
+
MediaSumSummarizationConfig(
|
| 51 |
+
name="roberta",
|
| 52 |
+
version=datasets.Version("1.0.0"),
|
| 53 |
+
description="MediaSum dataset for summarization, document",
|
| 54 |
+
),
|
| 55 |
+
MediaSumSummarizationConfig(
|
| 56 |
+
name="bert",
|
| 57 |
+
version=datasets.Version("1.0.0"),
|
| 58 |
+
description="MediaSum dataset for summarization, document",
|
| 59 |
+
),
|
| 60 |
+
MediaSumSummarizationConfig(
|
| 61 |
+
name="list",
|
| 62 |
+
version=datasets.Version("1.0.0"),
|
| 63 |
+
description="MediaSum dataset for summarization, document",
|
| 64 |
+
),
|
| 65 |
+
]
|
| 66 |
+
|
| 67 |
+
DEFAULT_CONFIG_NAME = "roberta"
|
| 68 |
+
|
| 69 |
+
def _info(self):
|
| 70 |
+
# Should return a datasets.DatasetInfo object
|
| 71 |
+
return datasets.DatasetInfo(
|
| 72 |
+
description=_DESCRIPTION,
|
| 73 |
+
features=datasets.Features(
|
| 74 |
+
{
|
| 75 |
+
_ARTICLE: datasets.Sequence(datasets.Value("string")) if self.config.name == "list" else datasets.Value("string"),
|
| 76 |
+
_ABSTRACT: datasets.Value("string"),
|
| 77 |
+
#"id": datasets.Value("string"),
|
| 78 |
+
}
|
| 79 |
+
),
|
| 80 |
+
supervised_keys=None,
|
| 81 |
+
homepage="https://github.com/zcgzcgzcg1/MediaSum",
|
| 82 |
+
citation=_CITATION,
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
def _split_generators(self, dl_manager):
|
| 86 |
+
|
| 87 |
+
train_path = dl_manager.download_and_extract(self._TRAIN_FILE) + "/train_data.txt"
|
| 88 |
+
val_path = dl_manager.download_and_extract(self._VAL_FILE) + "/val_data.txt"
|
| 89 |
+
test_path = dl_manager.download_and_extract(self._TEST_FILE) + "/test_data.txt"
|
| 90 |
+
|
| 91 |
+
return [
|
| 92 |
+
datasets.SplitGenerator(
|
| 93 |
+
name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}
|
| 94 |
+
),
|
| 95 |
+
datasets.SplitGenerator(
|
| 96 |
+
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_path}
|
| 97 |
+
),
|
| 98 |
+
datasets.SplitGenerator(
|
| 99 |
+
name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}
|
| 100 |
+
),
|
| 101 |
+
]
|
| 102 |
+
|
| 103 |
+
def _generate_examples(self, filepath):
|
| 104 |
+
"""Generate MediaSumSummarization examples."""
|
| 105 |
+
if self.config.name == "newline":
|
| 106 |
+
join_ = "\n"
|
| 107 |
+
elif self.config.name == "roberta":
|
| 108 |
+
join_ = "</s>"
|
| 109 |
+
elif self.config.name == "bert":
|
| 110 |
+
join_ = "[SEP]"
|
| 111 |
+
|
| 112 |
+
with open(filepath, encoding="utf-8") as f:
|
| 113 |
+
for id_, row in enumerate(f):
|
| 114 |
+
data = json.loads(row)
|
| 115 |
+
|
| 116 |
+
"""
|
| 117 |
+
'summary': str,
|
| 118 |
+
'document': List[str],
|
| 119 |
+
"""
|
| 120 |
+
document = data["utt"]
|
| 121 |
+
if self.config.name != "list":
|
| 122 |
+
document = join_.join(document)
|
| 123 |
+
summary = data["summary"]
|
| 124 |
+
yield id_, {"document": document, "summary": summary}
|