Delete loading script
Browse files
lr-sum.py
DELETED
|
@@ -1,160 +0,0 @@
|
|
| 1 |
-
"""LR-Sum summarization dataset"""
|
| 2 |
-
|
| 3 |
-
import json
|
| 4 |
-
import os
|
| 5 |
-
|
| 6 |
-
import datasets
|
| 7 |
-
|
| 8 |
-
_CITATION = """\
|
| 9 |
-
@inproceedings{palen-michel-lignos-2023-lr,
|
| 10 |
-
title = "{LR}-Sum: Summarization for Less-Resourced Languages",
|
| 11 |
-
author = "Palen-Michel, Chester and
|
| 12 |
-
Lignos, Constantine",
|
| 13 |
-
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
|
| 14 |
-
month = jul,
|
| 15 |
-
year = "2023",
|
| 16 |
-
address = "Toronto, Canada",
|
| 17 |
-
publisher = "Association for Computational Linguistics",
|
| 18 |
-
url = "https://aclanthology.org/2023.findings-acl.427",
|
| 19 |
-
doi = "10.18653/v1/2023.findings-acl.427",
|
| 20 |
-
pages = "6829--6844",
|
| 21 |
-
abstract = "We introduce LR-Sum, a new permissively-licensed dataset created with the goal of enabling further research in automatic summarization for less-resourced languages.LR-Sum contains human-written summaries for 40 languages, many of which are less-resourced. We describe our process for extracting and filtering the dataset from the Multilingual Open Text corpus (Palen-Michel et al., 2022).The source data is public domain newswire collected from from Voice of America websites, and LR-Sum is released under a Creative Commons license (CC BY 4.0), making it one of the most openly-licensed multilingual summarization datasets. We describe abstractive and extractive summarization experiments to establish baselines and discuss the limitations of this dataset.",
|
| 22 |
-
}
|
| 23 |
-
"""
|
| 24 |
-
|
| 25 |
-
_DESCRIPTION = """\
|
| 26 |
-
We introduce LR-Sum, a new permissively-licensed dataset created with the goal of enabling further research in automatic summarization for less-resourced languages.
|
| 27 |
-
LR-Sum contains human-written summaries for 40 languages, many of which are less-resourced.
|
| 28 |
-
We describe our process for extracting and filtering the dataset from the Multilingual Open Text corpus (Palen-Michel et al., 2022).
|
| 29 |
-
The source data is public domain newswire collected from from Voice of America websites, and LR-Sum is released under a Creative Commons license (CC BY 4.0), making it one of the most openly-licensed multilingual summarization datasets.
|
| 30 |
-
We describe abstractive and extractive summarization experiments to establish baselines and discuss the limitations of this dataset.
|
| 31 |
-
"""
|
| 32 |
-
|
| 33 |
-
_HOMEPAGE = "https://github.com/bltlab"
|
| 34 |
-
|
| 35 |
-
_LICENSE = "Creative Commons Attribution 4.0 International (CC-BY 4.0)"
|
| 36 |
-
|
| 37 |
-
_URL = "https://huggingface.co/datasets/bltlab/lr-sum/resolve/main/data/{}.tar.bz2"
|
| 38 |
-
|
| 39 |
-
_LANGUAGES = [
|
| 40 |
-
"amh",
|
| 41 |
-
"aze",
|
| 42 |
-
"ben",
|
| 43 |
-
"bod",
|
| 44 |
-
"bos",
|
| 45 |
-
"ckb",
|
| 46 |
-
"cmn_t",
|
| 47 |
-
"cmn_s",
|
| 48 |
-
"ell",
|
| 49 |
-
"eng",
|
| 50 |
-
"fas",
|
| 51 |
-
"fra",
|
| 52 |
-
"hat",
|
| 53 |
-
"hau",
|
| 54 |
-
"hye",
|
| 55 |
-
"ind",
|
| 56 |
-
"kat",
|
| 57 |
-
"khm",
|
| 58 |
-
"kin",
|
| 59 |
-
"kor",
|
| 60 |
-
"kmr",
|
| 61 |
-
"lao",
|
| 62 |
-
"mkd",
|
| 63 |
-
"mya",
|
| 64 |
-
"nde",
|
| 65 |
-
"por",
|
| 66 |
-
"prs",
|
| 67 |
-
"pus",
|
| 68 |
-
"rus",
|
| 69 |
-
"sna",
|
| 70 |
-
"som",
|
| 71 |
-
"spa",
|
| 72 |
-
"sqi",
|
| 73 |
-
"srp",
|
| 74 |
-
"swh",
|
| 75 |
-
"tha",
|
| 76 |
-
"tir",
|
| 77 |
-
"tur",
|
| 78 |
-
"ukr",
|
| 79 |
-
"urd",
|
| 80 |
-
"uzb",
|
| 81 |
-
"vie",
|
| 82 |
-
]
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
class Lrsum(datasets.GeneratorBasedBuilder):
|
| 86 |
-
VERSION = datasets.Version("1.0.0")
|
| 87 |
-
|
| 88 |
-
BUILDER_CONFIGS = [
|
| 89 |
-
datasets.BuilderConfig(
|
| 90 |
-
name="{}".format(lang),
|
| 91 |
-
version=datasets.Version("1.0.0")
|
| 92 |
-
)
|
| 93 |
-
for lang in _LANGUAGES
|
| 94 |
-
]
|
| 95 |
-
|
| 96 |
-
def _info(self):
|
| 97 |
-
return datasets.DatasetInfo(
|
| 98 |
-
description=_DESCRIPTION,
|
| 99 |
-
features=datasets.Features(
|
| 100 |
-
{
|
| 101 |
-
"id": datasets.Value("string"),
|
| 102 |
-
"url": datasets.Value("string"),
|
| 103 |
-
"title": datasets.Value("string"),
|
| 104 |
-
"summary": datasets.Value("string"),
|
| 105 |
-
"text": datasets.Value("string"),
|
| 106 |
-
}
|
| 107 |
-
),
|
| 108 |
-
supervised_keys=None,
|
| 109 |
-
homepage=_HOMEPAGE,
|
| 110 |
-
citation=_CITATION,
|
| 111 |
-
license=_LICENSE,
|
| 112 |
-
version=self.VERSION,
|
| 113 |
-
)
|
| 114 |
-
|
| 115 |
-
def _split_generators(self, dl_manager):
|
| 116 |
-
"""Returns SplitGenerators."""
|
| 117 |
-
lang = str(self.config.name)
|
| 118 |
-
url = _URL.format(lang)
|
| 119 |
-
|
| 120 |
-
data_dir = dl_manager.download_and_extract(url)
|
| 121 |
-
ret = [
|
| 122 |
-
datasets.SplitGenerator(
|
| 123 |
-
name=datasets.Split.TEST,
|
| 124 |
-
gen_kwargs={
|
| 125 |
-
"filepath": os.path.join(data_dir, lang, lang + "_test.jsonl"),
|
| 126 |
-
},
|
| 127 |
-
)
|
| 128 |
-
]
|
| 129 |
-
if os.path.exists(os.path.join(data_dir, lang, lang + "_train.jsonl")):
|
| 130 |
-
ret.append(datasets.SplitGenerator(
|
| 131 |
-
name=datasets.Split.TRAIN,
|
| 132 |
-
gen_kwargs={
|
| 133 |
-
"filepath": os.path.join(data_dir, lang, lang + "_train.jsonl"),
|
| 134 |
-
},
|
| 135 |
-
)
|
| 136 |
-
)
|
| 137 |
-
if os.path.exists(os.path.join(data_dir, lang, lang + "_val.jsonl")):
|
| 138 |
-
ret.append(
|
| 139 |
-
datasets.SplitGenerator(
|
| 140 |
-
name=datasets.Split.VALIDATION,
|
| 141 |
-
gen_kwargs={
|
| 142 |
-
"filepath": os.path.join(data_dir, lang, lang + "_val.jsonl"),
|
| 143 |
-
},
|
| 144 |
-
)
|
| 145 |
-
)
|
| 146 |
-
|
| 147 |
-
return ret
|
| 148 |
-
|
| 149 |
-
def _generate_examples(self, filepath):
|
| 150 |
-
"""Yields examples as (key, example) tuples."""
|
| 151 |
-
with open(filepath, encoding="utf-8") as f:
|
| 152 |
-
for idx_, row in enumerate(f):
|
| 153 |
-
data = json.loads(row)
|
| 154 |
-
yield idx_, {
|
| 155 |
-
"id": data["id_"],
|
| 156 |
-
"url": data["url"],
|
| 157 |
-
"title": data["title"],
|
| 158 |
-
"summary": data["summary"],
|
| 159 |
-
"text": data["text"],
|
| 160 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|