| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						"""A Dataset loading script for the QA-Adj dataset.""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from dataclasses import dataclass | 
					
					
						
						| 
							 | 
						from typing import Optional, Tuple, Union, Iterable, Set | 
					
					
						
						| 
							 | 
						from pathlib import Path | 
					
					
						
						| 
							 | 
						import itertools | 
					
					
						
						| 
							 | 
						import pandas as pd | 
					
					
						
						| 
							 | 
						import datasets | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_DESCRIPTION = """\ | 
					
					
						
						| 
							 | 
						The dataset contains question-answer pairs to capture adjectival semantics.   | 
					
					
						
						| 
							 | 
						This dataset was annotated by selected workers from Amazon Mechanical Turk. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_LICENSE = """MIT License | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						Copyright (c) 2022 Ayal Klein (kleinay) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						Permission is hereby granted, free of charge, to any person obtaining a copy | 
					
					
						
						| 
							 | 
						of this software and associated documentation files (the "Software"), to deal | 
					
					
						
						| 
							 | 
						in the Software without restriction, including without limitation the rights | 
					
					
						
						| 
							 | 
						to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
					
					
						
						| 
							 | 
						copies of the Software, and to permit persons to whom the Software is | 
					
					
						
						| 
							 | 
						furnished to do so, subject to the following conditions: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						The above copyright notice and this permission notice shall be included in all | 
					
					
						
						| 
							 | 
						copies or substantial portions of the Software. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
					
					
						
						| 
							 | 
						IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
					
					
						
						| 
							 | 
						FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | 
					
					
						
						| 
							 | 
						AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
					
					
						
						| 
							 | 
						LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
					
					
						
						| 
							 | 
						OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
					
					
						
						| 
							 | 
						SOFTWARE.""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						URL = "https://github.com/kleinay/QA-Adj-Dataset/raw/main/QAADJ_Dataset.zip" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						SUPPOERTED_DOMAINS = {"wikinews", "wikipedia"} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@dataclass | 
					
					
						
						| 
							 | 
						class QAAdjBuilderConfig(datasets.BuilderConfig): | 
					
					
						
						| 
							 | 
						    domains: Union[str, Iterable[str]] = "all"  | 
					
					
						
						| 
							 | 
						    full_dataset: bool = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class QaAdj(datasets.GeneratorBasedBuilder): | 
					
					
						
						| 
							 | 
						    """QAAdj: Question-Answer based semantics for adjectives. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    VERSION = datasets.Version("1.0.0") | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    BUILDER_CONFIG_CLASS = QAAdjBuilderConfig | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    BUILDER_CONFIGS = [ | 
					
					
						
						| 
							 | 
						        QAAdjBuilderConfig( | 
					
					
						
						| 
							 | 
						            name="default", version=VERSION, description="This provides the QAAdj dataset - train, dev and test" | 
					
					
						
						| 
							 | 
						        ), | 
					
					
						
						| 
							 | 
						        QAAdjBuilderConfig( | 
					
					
						
						| 
							 | 
						            name="full", version=VERSION, full_dataset=True,  | 
					
					
						
						| 
							 | 
						            description="""This provides the QAAdj dataset including gold reference  | 
					
					
						
						| 
							 | 
						            (300 expert-annotated instances) and propbank comparison instances""" | 
					
					
						
						| 
							 | 
						        ), | 
					
					
						
						| 
							 | 
						    ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    DEFAULT_CONFIG_NAME = ( | 
					
					
						
						| 
							 | 
						        "default"   | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def _info(self): | 
					
					
						
						| 
							 | 
						        features = datasets.Features( | 
					
					
						
						| 
							 | 
						            { | 
					
					
						
						| 
							 | 
						                "sentence": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "sent_id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "predicate_idx": datasets.Value("int32"), | 
					
					
						
						| 
							 | 
						                "predicate_idx_end": datasets.Value("int32"), | 
					
					
						
						| 
							 | 
						                "predicate": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "object_question": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "object_answer": datasets.Sequence(datasets.Value("string")), | 
					
					
						
						| 
							 | 
						                "domain_question": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "domain_answer": datasets.Sequence(datasets.Value("string")), | 
					
					
						
						| 
							 | 
						                "reference_question": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "reference_answer": datasets.Sequence(datasets.Value("string")), | 
					
					
						
						| 
							 | 
						                "extent_question": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "extent_answer": datasets.Sequence(datasets.Value("string")), | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        return datasets.DatasetInfo( | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            description=_DESCRIPTION, | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            features=features,   | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            supervised_keys=None, | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            license=_LICENSE, | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _split_generators(self, dl_manager): | 
					
					
						
						| 
							 | 
						        """Returns SplitGenerators."""   | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        domains: Set[str] = []  | 
					
					
						
						| 
							 | 
						        if self.config.domains == "all": | 
					
					
						
						| 
							 | 
						            domains = SUPPOERTED_DOMAINS | 
					
					
						
						| 
							 | 
						        elif isinstance(self.config.domains, str): | 
					
					
						
						| 
							 | 
						            if self.config.domains in SUPPOERTED_DOMAINS: | 
					
					
						
						| 
							 | 
						                domains = {self.config.domains} | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                raise ValueError(f"Unrecognized domain '{self.config.domains}'; only {SUPPOERTED_DOMAINS} are supported") | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            domains = set(self.config.domains) & SUPPOERTED_DOMAINS | 
					
					
						
						| 
							 | 
						            if len(domains) == 0: | 
					
					
						
						| 
							 | 
						                raise ValueError(f"Unrecognized domains '{self.config.domains}'; only {SUPPOERTED_DOMAINS} are supported") | 
					
					
						
						| 
							 | 
						        self.config.domains = domains | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						        self.corpus_base_path = Path(dl_manager.download_and_extract(URL)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        splits = [ | 
					
					
						
						| 
							 | 
						                datasets.SplitGenerator( | 
					
					
						
						| 
							 | 
						                    name=datasets.Split.TRAIN, | 
					
					
						
						| 
							 | 
						                     | 
					
					
						
						| 
							 | 
						                    gen_kwargs={ | 
					
					
						
						| 
							 | 
						                        "csv_fn": self.corpus_base_path / "train.csv", | 
					
					
						
						| 
							 | 
						                    }, | 
					
					
						
						| 
							 | 
						                ), | 
					
					
						
						| 
							 | 
						                datasets.SplitGenerator( | 
					
					
						
						| 
							 | 
						                    name=datasets.Split.VALIDATION, | 
					
					
						
						| 
							 | 
						                     | 
					
					
						
						| 
							 | 
						                    gen_kwargs={ | 
					
					
						
						| 
							 | 
						                        "csv_fn": self.corpus_base_path / "dev.csv", | 
					
					
						
						| 
							 | 
						                    }, | 
					
					
						
						| 
							 | 
						                ), | 
					
					
						
						| 
							 | 
						                datasets.SplitGenerator( | 
					
					
						
						| 
							 | 
						                    name=datasets.Split.TEST, | 
					
					
						
						| 
							 | 
						                     | 
					
					
						
						| 
							 | 
						                    gen_kwargs={ | 
					
					
						
						| 
							 | 
						                        "csv_fn": self.corpus_base_path / "test.csv", | 
					
					
						
						| 
							 | 
						                    }, | 
					
					
						
						| 
							 | 
						                ), | 
					
					
						
						| 
							 | 
						            ] | 
					
					
						
						| 
							 | 
						        if self.config.full_dataset: | 
					
					
						
						| 
							 | 
						            splits = splits + [ | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                datasets.SplitGenerator( | 
					
					
						
						| 
							 | 
						                    name="propbank", | 
					
					
						
						| 
							 | 
						                     | 
					
					
						
						| 
							 | 
						                    gen_kwargs={ | 
					
					
						
						| 
							 | 
						                        "csv_fn": self.corpus_base_path / "propbank_comparison_data.csv", | 
					
					
						
						| 
							 | 
						                    }, | 
					
					
						
						| 
							 | 
						                ), | 
					
					
						
						| 
							 | 
						            ] | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						        return splits | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						    def _generate_examples(self, csv_fn): | 
					
					
						
						| 
							 | 
						        df = pd.read_csv(csv_fn) | 
					
					
						
						| 
							 | 
						        for counter, row in df.iterrows(): | 
					
					
						
						| 
							 | 
						            yield counter, { | 
					
					
						
						| 
							 | 
						                "sentence": row['Input.sentence'], | 
					
					
						
						| 
							 | 
						                "sent_id": row['Input.qasrl_id'], | 
					
					
						
						| 
							 | 
						                "predicate_idx": row['Input.adj_index_start'], | 
					
					
						
						| 
							 | 
						                "predicate_idx_end": row['Input.adj_index_end'], | 
					
					
						
						| 
							 | 
						                "predicate": row['Input.target'], | 
					
					
						
						| 
							 | 
						                "object_question": self._get_optional_question(row.object_q), | 
					
					
						
						| 
							 | 
						                "object_answer": self._get_optional_answer(row["Answer.answer1"]), | 
					
					
						
						| 
							 | 
						                "domain_question": self._get_optional_question(row.domain_q), | 
					
					
						
						| 
							 | 
						                "domain_answer": self._get_optional_answer(row["Answer.answer3"]), | 
					
					
						
						| 
							 | 
						                "reference_question": self._get_optional_question(row.comparison_q), | 
					
					
						
						| 
							 | 
						                "reference_answer": self._get_optional_answer(row["Answer.answer2"]), | 
					
					
						
						| 
							 | 
						                "extent_question": self._get_optional_question(row.degree_q), | 
					
					
						
						| 
							 | 
						                "extent_answer":   self._get_optional_answer(row["Answer.answer4"]), | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _get_optional_answer(self, val): | 
					
					
						
						| 
							 | 
						        if pd.isnull(val):    | 
					
					
						
						| 
							 | 
						            return [] | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            return val.split("+") | 
					
					
						
						| 
							 | 
						    def _get_optional_question(self, val): | 
					
					
						
						| 
							 | 
						        if pd.isnull(val):    | 
					
					
						
						| 
							 | 
						            return "" | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            return val | 
					
					
						
						| 
							 | 
						     |