|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
Parallel corpus of full-text articles in Portuguese, English and Spanish from SciELO. |
|
|
""" |
|
|
from typing import IO, Any, Generator, List, Optional, Tuple |
|
|
|
|
|
import datasets |
|
|
|
|
|
from .bigbiohub import text2text_features |
|
|
from .bigbiohub import BigBioConfig |
|
|
from .bigbiohub import Tasks |
|
|
|
|
|
_LANGUAGES = ['English', 'Spanish', 'Portuguese'] |
|
|
_PUBMED = False |
|
|
_LOCAL = False |
|
|
_CITATION = """\ |
|
|
@inproceedings{soares2018large, |
|
|
title = {A Large Parallel Corpus of Full-Text Scientific Articles}, |
|
|
author = {Soares, Felipe and Moreira, Viviane and Becker, Karin}, |
|
|
year = 2018, |
|
|
booktitle = { |
|
|
Proceedings of the Eleventh International Conference on Language Resources |
|
|
and Evaluation (LREC-2018) |
|
|
} |
|
|
} |
|
|
""" |
|
|
|
|
|
_DATASETNAME = "scielo" |
|
|
_DISPLAYNAME = "SciELO" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
|
A parallel corpus of full-text scientific articles collected from Scielo \ |
|
|
database in the following languages: English, Portuguese and Spanish. The corpus \ |
|
|
is sentence aligned for all language pairs, as well as trilingual aligned for a \ |
|
|
small subset of sentences. Alignment was carried out using the Hunalign \ |
|
|
algorithm. |
|
|
""" |
|
|
|
|
|
_HOMEPAGE = "https://sites.google.com/view/felipe-soares/datasets#h.p_92uSCyAjWSRB" |
|
|
|
|
|
_LICENSE = 'Creative Commons Attribution 4.0 International' |
|
|
|
|
|
_URLS = { |
|
|
"en_es": "https://ndownloader.figstatic.com/files/14019287", |
|
|
"en_pt": "https://ndownloader.figstatic.com/files/14019308", |
|
|
"en_pt_es": "https://ndownloader.figstatic.com/files/14019293", |
|
|
} |
|
|
|
|
|
_SUPPORTED_TASKS = [Tasks.TRANSLATION] |
|
|
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
|
|
|
class ScieloDataset(datasets.GeneratorBasedBuilder): |
|
|
"""Parallel corpus of full-text articles in Portuguese, English and Spanish from SciELO.""" |
|
|
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
|
BigBioConfig( |
|
|
name="scielo_en_es_source", |
|
|
version=SOURCE_VERSION, |
|
|
description="English-Spanish", |
|
|
schema="source", |
|
|
subset_id="scielo_en_es", |
|
|
), |
|
|
BigBioConfig( |
|
|
name="scielo_en_pt_source", |
|
|
version=SOURCE_VERSION, |
|
|
description="English-Portuguese", |
|
|
schema="source", |
|
|
subset_id="scielo_en_pt", |
|
|
), |
|
|
BigBioConfig( |
|
|
name="scielo_en_pt_es_source", |
|
|
version=SOURCE_VERSION, |
|
|
description="English-Portuguese-Spanish", |
|
|
schema="source", |
|
|
subset_id="scielo_en_pt_es", |
|
|
), |
|
|
BigBioConfig( |
|
|
name="scielo_en_es_bigbio_t2t", |
|
|
version=BIGBIO_VERSION, |
|
|
description="scielo BigBio schema English-Spanish", |
|
|
schema="bigbio_t2t", |
|
|
subset_id="scielo_en_es", |
|
|
), |
|
|
BigBioConfig( |
|
|
name="scielo_en_pt_bigbio_t2t", |
|
|
version=BIGBIO_VERSION, |
|
|
description="scielo BigBio schema English-Portuguese", |
|
|
schema="bigbio_t2t", |
|
|
subset_id="scielo_en_pt", |
|
|
), |
|
|
] |
|
|
|
|
|
DEFAULT_CONFIG_NAME = "scielo_source_en_es" |
|
|
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
|
|
if self.config.schema == "source": |
|
|
lang_list: List[str] = self.config.subset_id.split("_")[1:] |
|
|
features = datasets.Features( |
|
|
{"translation": datasets.features.Translation(languages=lang_list)} |
|
|
) |
|
|
|
|
|
elif self.config.schema == "bigbio_t2t": |
|
|
features = text2text_features |
|
|
|
|
|
return datasets.DatasetInfo( |
|
|
description=_DESCRIPTION, |
|
|
features=features, |
|
|
homepage=_HOMEPAGE, |
|
|
license=str(_LICENSE), |
|
|
citation=_CITATION, |
|
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
|
"""Returns SplitGenerators.""" |
|
|
lang_list: List[str] = self.config.subset_id.split("_")[1:] |
|
|
languages = "_".join(lang_list) |
|
|
archive = dl_manager.download(_URLS[languages]) |
|
|
|
|
|
fname = languages |
|
|
|
|
|
if languages == "en_pt_es": |
|
|
return [ |
|
|
datasets.SplitGenerator( |
|
|
name=datasets.Split.TRAIN, |
|
|
gen_kwargs={ |
|
|
"source_file": f"{fname}.en", |
|
|
"target_file": f"{fname}.pt", |
|
|
"target_file_2": f"{fname}.es", |
|
|
"files": dl_manager.iter_archive(archive), |
|
|
"languages": languages, |
|
|
"split": "train", |
|
|
}, |
|
|
), |
|
|
] |
|
|
else: |
|
|
return [ |
|
|
datasets.SplitGenerator( |
|
|
name=datasets.Split.TRAIN, |
|
|
gen_kwargs={ |
|
|
"source_file": f"{fname}.{lang_list[0]}", |
|
|
"target_file": f"{fname}.{lang_list[1]}", |
|
|
"files": dl_manager.iter_archive(archive), |
|
|
"languages": languages, |
|
|
"split": "train", |
|
|
}, |
|
|
), |
|
|
] |
|
|
|
|
|
def _generate_examples( |
|
|
self, |
|
|
languages: str, |
|
|
split: str, |
|
|
source_file: str, |
|
|
target_file: str, |
|
|
files: Generator[Tuple[str, IO[bytes]], Any, None], |
|
|
target_file_2: Optional[str] = None, |
|
|
) -> Tuple[int, dict]: |
|
|
|
|
|
if self.config.schema == "source": |
|
|
for path, f in files: |
|
|
if path == source_file: |
|
|
source_sentences = f.read().decode("utf-8").split("\n") |
|
|
elif path == target_file: |
|
|
target_sentences = f.read().decode("utf-8").split("\n") |
|
|
elif languages == "en_pt_es" and path == target_file_2: |
|
|
target_sentences_2 = f.read().decode("utf-8").split("\n") |
|
|
|
|
|
if languages == "en_pt_es": |
|
|
source, target, target_2 = tuple(languages.split("_")) |
|
|
for idx, (l1, l2, l3) in enumerate( |
|
|
zip(source_sentences, target_sentences, target_sentences_2) |
|
|
): |
|
|
result = {"translation": {source: l1, target: l2, target_2: l3}} |
|
|
yield idx, result |
|
|
else: |
|
|
source, target = tuple(languages.split("_")) |
|
|
for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)): |
|
|
result = {"translation": {source: l1, target: l2}} |
|
|
yield idx, result |
|
|
|
|
|
elif self.config.schema == "bigbio_t2t": |
|
|
for path, f in files: |
|
|
if path == source_file: |
|
|
source_sentences = f.read().decode("utf-8").split("\n") |
|
|
elif path == target_file: |
|
|
target_sentences = f.read().decode("utf-8").split("\n") |
|
|
|
|
|
uid = 0 |
|
|
source, target = tuple(languages.split("_")) |
|
|
for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)): |
|
|
uid += 1 |
|
|
yield idx, { |
|
|
"id": str(uid), |
|
|
"document_id": str(idx), |
|
|
"text_1": l1, |
|
|
"text_2": l2, |
|
|
"text_1_name": source, |
|
|
"text_2_name": target, |
|
|
} |
|
|
|