|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
import math |
|
|
from dataclasses import dataclass |
|
|
from torch import nn |
|
|
from diffusers.utils import BaseOutput |
|
|
from diffusers.models.attention import Attention, FeedForward |
|
|
from einops import rearrange, repeat |
|
|
from typing import Optional |
|
|
|
|
|
|
|
|
class PositionalEncoding(nn.Module): |
|
|
""" |
|
|
Implements positional encoding as described in "Attention Is All You Need". |
|
|
Adds sinusoidal based positional encodings to the input tensor. |
|
|
""" |
|
|
|
|
|
_SCALE_FACTOR = 10000.0 |
|
|
|
|
|
def __init__(self, dim: int, dropout: float = 0.0, max_length: int = 24): |
|
|
super(PositionalEncoding, self).__init__() |
|
|
|
|
|
self.dropout = nn.Dropout(p=dropout) |
|
|
|
|
|
|
|
|
positional_encoding = torch.zeros(1, max_length, dim) |
|
|
|
|
|
|
|
|
position = torch.arange(max_length).unsqueeze(1) |
|
|
div_term = torch.exp(torch.arange(0, dim, 2) * (-math.log(self._SCALE_FACTOR) / dim)) |
|
|
|
|
|
positional_encoding[0, :, 0::2] = torch.sin(position * div_term) |
|
|
positional_encoding[0, :, 1::2] = torch.cos(position * div_term) |
|
|
|
|
|
|
|
|
|
|
|
self.register_buffer('positional_encoding', positional_encoding) |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor, length: int) -> torch.Tensor: |
|
|
hidden_states = hidden_states + self.positional_encoding[:, :length] |
|
|
return self.dropout(hidden_states) |
|
|
|
|
|
|
|
|
class TemporalAttention(Attention): |
|
|
def __init__(self, *args, **kwargs): |
|
|
super().__init__(*args, **kwargs) |
|
|
self.pos_encoder = PositionalEncoding(kwargs["query_dim"], dropout=0) |
|
|
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, number_of_frames=8): |
|
|
sequence_length = hidden_states.shape[1] |
|
|
hidden_states = rearrange(hidden_states, "(b f) s c -> (b s) f c", f=number_of_frames) |
|
|
hidden_states = self.pos_encoder(hidden_states, length=number_of_frames) |
|
|
|
|
|
if encoder_hidden_states: |
|
|
encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b s) n c", s=sequence_length) |
|
|
|
|
|
hidden_states = super().forward(hidden_states, encoder_hidden_states, attention_mask=attention_mask) |
|
|
|
|
|
return rearrange(hidden_states, "(b s) f c -> (b f) s c", s=sequence_length) |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class TransformerTemporalOutput(BaseOutput): |
|
|
sample: torch.FloatTensor |
|
|
|
|
|
|
|
|
class TransformerTemporal(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
num_attention_heads: int, |
|
|
attention_head_dim: int, |
|
|
in_channels: int, |
|
|
num_layers: int = 1, |
|
|
dropout: float = 0.0, |
|
|
norm_num_groups: int = 32, |
|
|
cross_attention_dim: Optional[int] = None, |
|
|
attention_bias: bool = False, |
|
|
activation_fn: str = "geglu", |
|
|
upcast_attention: bool = False, |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
|
|
|
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) |
|
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
|
[ |
|
|
TransformerBlock( |
|
|
dim=inner_dim, |
|
|
num_attention_heads=num_attention_heads, |
|
|
attention_head_dim=attention_head_dim, |
|
|
dropout=dropout, |
|
|
activation_fn=activation_fn, |
|
|
attention_bias=attention_bias, |
|
|
upcast_attention=upcast_attention, |
|
|
cross_attention_dim=cross_attention_dim |
|
|
) |
|
|
for _ in range(num_layers) |
|
|
] |
|
|
) |
|
|
self.proj_out = nn.Linear(inner_dim, in_channels) |
|
|
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None): |
|
|
_, num_channels, f, height, width = hidden_states.shape |
|
|
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") |
|
|
|
|
|
skip = hidden_states |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
hidden_states = rearrange(hidden_states, "bf c h w -> bf (h w) c") |
|
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
|
|
for block in self.transformer_blocks: |
|
|
hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, number_of_frames=f) |
|
|
|
|
|
hidden_states = self.proj_out(hidden_states) |
|
|
hidden_states = rearrange(hidden_states, "bf (h w) c -> bf c h w", h=height, w=width).contiguous() |
|
|
|
|
|
output = hidden_states + skip |
|
|
output = rearrange(output, "(b f) c h w -> b c f h w", f=f) |
|
|
|
|
|
return output |
|
|
|
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
dim, |
|
|
num_attention_heads, |
|
|
attention_head_dim, |
|
|
dropout=0.0, |
|
|
activation_fn="geglu", |
|
|
attention_bias=False, |
|
|
upcast_attention=False, |
|
|
depth=2, |
|
|
cross_attention_dim: Optional[int] = None |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
self.is_cross = cross_attention_dim is not None |
|
|
|
|
|
attention_blocks = [] |
|
|
norms = [] |
|
|
|
|
|
for _ in range(depth): |
|
|
attention_blocks.append( |
|
|
TemporalAttention( |
|
|
query_dim=dim, |
|
|
cross_attention_dim=cross_attention_dim, |
|
|
heads=num_attention_heads, |
|
|
dim_head=attention_head_dim, |
|
|
dropout=dropout, |
|
|
bias=attention_bias, |
|
|
upcast_attention=upcast_attention, |
|
|
) |
|
|
) |
|
|
norms.append(nn.LayerNorm(dim)) |
|
|
|
|
|
self.attention_blocks = nn.ModuleList(attention_blocks) |
|
|
self.norms = nn.ModuleList(norms) |
|
|
|
|
|
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) |
|
|
self.ff_norm = nn.LayerNorm(dim) |
|
|
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, number_of_frames=None): |
|
|
|
|
|
if not self.is_cross: |
|
|
encoder_hidden_states = None |
|
|
|
|
|
for block, norm in zip(self.attention_blocks, self.norms): |
|
|
norm_hidden_states = norm(hidden_states) |
|
|
hidden_states = block( |
|
|
norm_hidden_states, |
|
|
encoder_hidden_states=encoder_hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
number_of_frames=number_of_frames |
|
|
) + hidden_states |
|
|
|
|
|
norm_hidden_states = self.ff_norm(hidden_states) |
|
|
hidden_states = self.ff(norm_hidden_states) + hidden_states |
|
|
|
|
|
output = hidden_states |
|
|
return output |
|
|
|